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Protecting Distributed Financial Networks

Distributed financial networks are a feature of the international financial system 
of payments. Still, they are also increasingly vulnerable to disruption as new 
technologies create unexpected opportunities for surprises, threats, and shocks. 
These vulnerabilities arise due to current economic and technical trends, including 
the increasing velocity and digitalization of individual economic activity, as well 
as the growing interconnectedness of the global economy. In this brief, we discuss 
these financial system challenges through the lens of a credit card payment system. 
We present a range of integrated tools and procedures tailored to meet the needs of 
the financial firm, network, and system as no single “silver bullet” solution exists. 
Instead, protecting networks requires multiple, integrated solutions that work 
together to reduce system fraud and errors.
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INTRODUCTION

Distributed financial networks are a feature of  the 
international financial system of payments. Still, they 
are also increasingly vulnerable to disruption as new 
technologies create unexpected opportunities for 
surprises, threats, and shocks. These vulnerabilities 
arise due to current economic and technical trends, 
including the increasing velocity and digitalization of 
individual economic activity as well as the growing 
interconnectedness of the global economy. Due to 
these expanding economic relationships and evolving 
forms of financial intermediation, new challenges 
emerge over addressing vulnerabilities such as juris-
dictional regulatory differences, cyber-attacks, and 
transnational fraud. These factors have taxed finan-
cial and regulatory organizations’ ability to ensure 
consistency across distributed financial systems and 

maintain their stability due to potential losses of both 
data integrity and user confidence.

Addressing these vulnerabilities at the institutional 
and transaction level is challenging, but so is iden-
tifying and recovering from coordinated systemic 
shocks across multiple institutions. Financial institu-
tions typically ensure their system resiliency through 
individual backups, [12] but when securing a distrib-
uted Financial Market Infrastructure (FMI), similar 
practices require far more coordination, since data 
storage and their backup are uncoordinated across 
institutions [3]. 

This brief addresses the challenges presented by 
distributed FMIs in four parts. First, we investigate 
the processing of consumer payment transactions 
as an example to determine industry best practices. 
This is done using anonymized Mastercard payment 



July 30, 2024 | Page 2

data [7] to examine transaction relationships among 
firms rather than at a specific firm. Second, we look 
at the networks that result from these transactions 
among firms, which allows us to explore an empir-
ical example, albeit limited, of a distributed financial 
network. 

Third, we review ways to identify significant changes 
to the distributed system. The data can reveal 
multiple insights, but doing so requires analyzing 
and synthesizing many transactions. We demonstrate 
a model that can perform this automatically. Fourth, 
we look at institutional processes that protect the 
financial system when problems occur. To maintain 
the resilience of financial systems, informed actions 
must be undertaken to address identified problems. 
Using Mastercard credit card payments, we focus on 
transaction fraud. Using the demonstrated detection 
models, the number of problems and system features 
can be expanded to include other problematic 
dynamics including system attacks. The ability to 
detect and address financial systems threats beyond 
transaction fraud can be expanded to ensure finan-
cial network integrity and maintain user trust. 

PROCESSING PAYMENT 
TRANSACTIONS

Mastercard credit card data proves an excellent 
example of a distributed financial network because it 
provides worldwide transaction coverage to more 
than 210 countries [8]. The credit card transaction 

data we received from Mastercard was comprised of 
two transaction components, authorization and 
clearing, as shown in Figure 1. When a customer 
makes a purchase at a merchant, the customer initi-
ates a transaction authorized through a call from the 
acquiring (merchant’s) bank to the issuing (custom-
er’s) bank. This authorization allows the customer to 
make the purchase with the understanding that the 
item will be paid for later through the clearing process 
in which the balance between the issuing and 
acquiring banks is settled.

The transaction data is anonymized1 from customer 
information and contains information on autho-
rizing and clearing transaction records. Specifically, 
the data comes from Canadian Mastercard transac-
tions and are for March 2020 and 2021 representing 
approximately 500 thousand transactions per day.2

We generate a set of consistency metrics to assess if 
a problem exists between the issuing and acquiring 
banks in the distributed financial network. For 
example, high-level balances between banks are 
calculated from each bank’s perspective, and these 
are then checked against each other periodically in a 
periodically generated consistency report. Significant 
discrepancies then provide the impetus for more 
detailed analysis and investigation into the source of 
the discrepancy, which contributes to the confidence 
that the financial network is functioning properly. In 
this case, calculation and comparison of these reported 
balances did not yield any significant discrepancies, 

Note: Mastercard use case shows an example of authorization and clearing for a transaction between the customer/issuing (C) and mer-
chant/acquiring (M) banks. 

Source: Authors’ creation

Figure 1.  Mastercard Use Case
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which was expected as Mastercard spends consider-
able effort ensuring that bank balances are accurate. 

We calculated six variables to support the consistency 
analysis: (1) total transactions; (2) total cleared trans-
actions; (3) total incomplete transactions; (4) total 
corrupt transactions; (5) transaction minimum and 
maximum; (6) transaction expected value. Credit 
card transaction types are categorized by Merchant 
Category Codes (MCCs) [4], of which there are 
approximately 500. Four code categories were selected 
given their prominence and potential vulnerability: 
(1) restaurants; (2) airfare; (3) gambling; (4) crypto/
quasi-cash, which are shown in Table 1.

Table 1 shows that most credit card transactions are 
restaurant transactions with the number reducing by 
an order of magnitude from airlines to gambling and 
crypto / quasi-cash. However, in terms of transac-
tion value, the airline transactions are about an order 
of magnitude greater than restaurants, and crypto 
/ quasi-cash is significantly higher than the other 
three categories. This shows that MCC sub-catego-
ries can have very different characteristics, reflecting 
each category’s particular dynamics. In terms of raw 
numbers, over 90% of transactions are restaurant 
transactions, which tend to have lower costs and often 
exhibit a difference between clearing and authorizing 
amounts due to tips. These look very different from 

crypto transactions, which are much lower volume 
but significantly higher value.

Table 2 shows a subset of transactions broken out by 
MCC and categorized as cleared, incomplete, and 
corrupt. These categories are determined by transac-
tion response codes, which are defined by the 
International Organization of Standards (ISO) [9]. 
Cleared transactions have a response code denoting, 
“Approved or completed.” Such transactions have a 
corresponding clearing transaction that normally 
occurs within 48 hours of the authorization. However, 
we observed that restaurants exhibit more delay than 
the other MCCs, sometimes appearing more than a 
week after the initial authorization. Incomplete 
transactions, of which there are approximately 50, 
denote various transaction status conditions and 
problems. For example, Incomplete Transactions are 
those that are blocked because of a simple problem 
that the cardholder can easily correct, such as “insuf-
ficient funds, over credit limit,” “transaction not 
permitted to issuer/cardholder,” and “not declined, 
valid for zero amount transactions” ( i.e., transaction 
performed not for a purchase but to determine if the 
card is active). A subset of the Incomplete Transaction 
types prevents potentially Corrupt Transactions such 

Table 1.  Canadian Transactions by Merchant 
Category Codes

Note: Canadian transactions characterized broken out by Merchant 
Category Codes (MCCs) to show significant differences among 
Transactions per day and Mean transaction value.

Source: Authors’ analysis [7]

Merchant Category 
Code (MCC)

Transactions 
Per Day

Mean 
Transaction Value

Restaurants 500,000 $50 CAD

Airfare 30,000 $500 CAD

Gambling 3,000 $70 CAD 

Crypto/quasi-cash 300 $1000 CAD 

Table 2.  Canadian Transactions for March 1, 2020

Note: Canadian transactions for March 1, 2020, characterized by 
transaction response codes [9] and categorized as cleared, incom-
plete, and corrupt.

Source: Authors’ analysis [7]

Merchant 
Category 

Code (MCC)
Cleared 

Transactions 
Incomplete 
Transactions

Corrupt 
Transactions

Total 98.0% 1.9% 1.4%

Restaurants 98.9% 1.1% 0.7%

Airfare 91.7% 8.1% 7.0%

Gambling 83.0% 16.1% 11.8%

Crypto/quasi-
cash

77.8% 20.7% 16.6%
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as “capture card,” “do not honor,” and “invalid card 
number.” 

The transaction analysis in Table 2 is over a single 
day (March 1, 2020) and constrained geography 
(Canada). More extensive analysis, both temporally 
and geographically, would provide additional results 
that could be analyzed and tracked over time. Still 
this limited MCC and response code-based analyses 
gives a sense of the character and richness of credit 
card transaction data.

EXPLORING PAYMENT NETWORKS

Credit card transactions combine to create network 
relationships among acquiring and issuing banks. 
Looking beyond the set of bilateral bank relation-
ships allows us to consider how the larger payments 
system creates the distributed financial network. To 
give a sense of the size and scale of the Mastercard 
network of banks in Canada, there are 42 acquiring 
banks and 96 issuing banks in the dataset. Of the 
4,032 possible combinations of issuing and acquiring 
bank transactions, we find 1,146 (28%) have transac-
tional relationships. 

Note that these relationships reveal significant clus-
tering. That is, there are few banks with large numbers 
of relationships and many banks with few relation-
ships, which is described as a power law relationship 
and is common in dynamic networks [1]. For 
example, Figure 2 shows that acquiring banks are 
highly centralized, especially with 186 at the upper 
left, while the issuing banks are more evenly distrib-
uted. Note also bank 389 at the bottom center is 
both an acquiring and issuing bank, which is another 
form of centralization. Note that these graphics are 
created from one day of transaction data, so further 
analysis is required to determine if and how these 
relationships evolve over time. This visualization 
shows a dense network of edges, each representing a 
relationship between two financial institutions, 
which, in aggregate, compose a highly complex and 
interconnected financial network, highlighting the 
need for protection, not just of the firms themselves, 
but of the system as a whole.

IDENTIFYING SYSTEMIC CHANGES

The collected transaction data can be used to identify 
shifts and changes in the underlying financial system. 
For example, we find two significant systemic changes 
when we compare March 2020 to March 2021 as 
shown in Figure 3. First, daily transaction counts 
for March 2020, shown in orange, reveal a signifi-
cant decrease in transaction volume as measured by 
the number of authorizations in the second half of 
the month. Second, for March 2021, the transaction 
volume was significantly decreased compared to the 
previous year, March 2020, but was relatively stable 
across the month. This leads to two questions: first, 
what caused these changes, and second, can such 
changes be identified automatically?

Before offering a possible answer to the first ques-
tion, note that this is typically the kind of puzzle 
that confronts those who notice unusual trends in 

Figure 2. Sankey Diagram Showing Transaction Flow 

Note: Sankey diagram showing transaction flow from acquiring/
merchant (left) to issuing/customer (right) bank, where width of 
connection indicates the number of transactions between bank 
pairs, filtered to top 25% of relationships by volume. Note bank 
389 (bottom center) operates as both an authorizing and issuing 
bank.

Source: Authors’ analysis [7]

398
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transaction data. The change may be easily noticed, 
but identifying and understanding the reasons 
underlying it requires additional research and access 
to other data sources. Addressing the first question, 
we postulate that Canada’s COVID-19 quarantine 
and distancing policies added in mid-March 2020 
resulted in a measurable decrease in credit card 
transactions. Measurements taken the following 
year, in March 2021, reveal a relatively diminished 
number of transactions due to the ongoing COVID 
control measures. Still they are comparatively consis-
tent within the month (apart from a clear weekly 
cycle), indicating a long-term change from the earlier 
systemic shock. 

Answering the second question—Can these changes 
be identified automatically?—our analysis of Figure 
3 required a significant level of human-directed 
computation, visualization, and analysis to identify 
the likely COVID-19 impacts, which is not feasible 
for operational datasets at scale. Our approach to 
automatically identifying inconsistencies is based on 
learning causal models of normal behavior from the 
Mastercard data and using these models to infer 
inconsistencies. Specifically, we determined a set of 
transaction features that provide information 
regarding normal transaction behavior. This consists 

of a combination of straightforward transaction 
information (e.g., the transaction amount and the 
merchant category) and more complex features (e.g., 
the average historic transaction amount for this 
merchant). Using causal structure learning algo-
rithms, we can then use these features to learn causal 
models of transaction behavior.

Causal models in this setting consist of Bayesian 
networks, where an edge from variable A to vari-
able B is interpreted as “A causes B” [10, 13]. The 
network represents the joint probability distribu-
tion over the transactions in an interpretable way. 
Such models are typically constructed in two main 
steps—structure learning and parameter fitting—
with structure learning algorithms falling broadly 
into score-based and constraint-based categories. 
Score-based methods attempt to find the network 
structure that optimizes a score function (such as the 
Bayesian Information Criterion, or BIC). In contrast, 
constraint-based methods perform a series of condi-
tional independence tests on the data, adjusting the 
edges in the network to reflect the results of those 
tests. Once a structure is learned, a conditional prob-
ability distribution is fitted at each node, denoting 
the probability distribution of each variable condi-
tioned on the values of its direct causes—that is, 
the variables that point to it—in the network. The 
product of these conditional probability distributions 
composes a joint distribution over the data.

Figure 4 provides an example of a causal structure 
learned using Mastercard data from the first week 
of March 2020. The network structure can provide 
insight into the behavior of transactions, and the 
probability distributions can be used to detect signifi-
cant system anomalies. For example, the edge “crypto 
-> term attend” suggests that the probability distribu-
tion of a card terminal being human-attended differs 
for crypto and non-crypto transactions, and the edge 
“S. Amt -> B. Amt” suggests that the transaction 
settlement amount affects the billing amount. Some 
background information of temporal precedence was 
provided to the algorithm in the form of logical rules 
that cannot be violated as an edge blacklist (e.g., ‘mean 
historic merchant transaction amount’ cannot occur 
after ‘transaction amount’), and, when an undirected 
edge (i.e., an arrow without a causal interpretation) 

Figure 3. Authorization Counts for March 2020 and 
2021 Compared

Note: March 2020 transaction volume decreases significantly in the 
second half due to COVID sanctions impacting economic activity, 
while March 2021 transactions remain comparatively stable.

Source: Authors’ analysis [7]
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was returned by the structure learning algorithm, it 
was modified by hand using knowledge about the 
problem domain.

These models can be used to detect systemic shifts in 
the transaction population by calculating the joint 
probability of the features of any individual transac-
tion. By calculating this on a sample of transactions, 
we get a distribution of transaction probabilities. 
Assuming the transactions in the sample are drawn 
from the same underlying distribution as the transac-
tions in the training data, we expect the distribution 
of transaction probabilities to be static over time. 
If the distribution starts to deviate, this suggests a 
systemic change in how transactions function, which 
may indicate a large-scale event. As an initial test of 

this, we trained separate models on the first week 
of March 2020 and the first week of March 2021. 
We then sampled transactions from days throughout 
March 2020 and 2021 and calculated their proba-
bilities according to their respective models. As we 
can see in Figure 5, March 2020 sees a steep drop in 
probability—as calculated by multiplying the condi-
tional probabilities of the observed values for each 
variable given the observed values of its parents in the 
network—that persists in the second half of March, 
which is consistent with the large-scale changes 
brought about by COVID lockdowns at that time.

Figure 6 shows a return to a more consistent trans-
action pattern in March 2021, like in the first half 
of March 2020. Because these joint probabilities are 

Figure 4. Causal structure of transactions during the first half of March 20203 

Note: A causal graph with nodes representing features of a transaction (as described in footnote 3) and directed edges representing the 
causal dependence structure among those features.

Source: Authors’ analysis [7]
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composed of conditional probabilities at each node, 
we can further investigate which variables experi-
enced a probability drop, further helping guide the 
investigation to identify potential causes of a systemic 
change.

Figures 5 and 6 were created using transactions 
from all MCCs during the training period. However, 
models can be trained over any subset of the data, 
providing more focused and tailored insights. For 
example, a model could be trained on transactions 
from only a single issuing bank, a particular industry 
or economic sector, or a selected country or region 
over a focused timeframe. As shown above, we can 
learn a model of typical transaction behavior for that 
use case and calculate the distribution of transaction 
probabilities over time. A shift in these probabilities 
would signify a change in behavior for that focused 
subsystem, rather than the entire financial system. 
We can apply such analysis to any subset of the data 
for which we have sufficient transactions. While the 
model’s causal structure alone can be informative, the 
model also contains a set of conditional probabilities 
that can be used to detect anomalies—automatically 
identify system changes. Such models encode what 
behavior is typical for payment transactions, and this 

can be used to identify automatically when transac-
tions shift away from that behavior.

PROTECTING FINANCIAL 
NETWORKS

Computational tools and processes provide vital 
protection to financial networks and systems. 
However, by themselves, they are insufficient as 
personnel must be trained to know when and how 
to use them through preparation, coordination, and 
practice [11]. For example, Mastercard employs a 
Safety Net system that automatically applies rule-
based models to detect transaction fraud [6]. Given 
the importance of fraud detection to a credit card’s 
business, this capability is fundamental to supporting 
the integrity of the authorization process. Mastercard 
emphasizes fraud detection during the authorization 
step to avoid the cost of unwinding cleared transac-
tions through the chargeback process, which can be 
significant. Credit card companies therefore err on 
the side of caution with the understanding that trans-
actions denied during authorization can always be 
re-initiated. These types of checks can be expanded 
using the types of causal models described in Section 
3 to address other types of relationships revealed by 

Figure 5. Joint Probability of a Sample of Transac-
tions in March 2020

Note: Joint probability of a sample of transactions based on a 
model learned on data from March 6-12, 2020, which shows a clear 
reduction in transaction volume after March 14.

Source: Authors’ analysis [7]

Figure 6. Joint Probability of a Sample of Transac-
tions in March 2021

Note: Joint probability of a sample of transactions based on a mod-
el learned on data from March 6-12, 2021, which shows a compara-
tively consistent transaction pattern during this period.

Source: Authors’ analysis [7]
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consumer transactions including transnational fraud 
[2]; cyber-attacks [3,5]; and money laundering as well 
as other financial crimes [14]. 

While causal models can be applied to identify a 
range of systemic threats and dynamics, several 
challenges exist when considering applications to 
transnational fraud. First, while the Mastercard 
payments dataset spans multiple regulatory regimes 
(210 countries and territories [8]) that allow for 
transnational dynamics to be detected, the volume is 
quite high – on the order of 60k transactions/sec – so 
automatic detection models must be computation-
ally efficient. Prioritizing model application based on 
risk—a function of problem frequency and impact—
is therefore required [3]. 

Second, the transaction environment can be count-
er-intuitive and hard to interpret, as what appears at 
first glance to be problematic often is not, and what 
seems normal can be problematic. This complicates 
detection and causal identification, so care must be 
given to the human interactions that support these 
systems. New models will need to be added and 
others removed, requiring a model testing process to 
ensure that they perform effectively and as expected. 

Third, the transaction payments system itself, 
rooted in human behavior, is dynamic, changing 
and evolving over time. Therefore, identifying and 
addressing problems such as fraud doesn’t fully elimi-
nate them so much as cause the system to change and 
evolve. This presents an opportunity to apply artificial 
intelligence to create models that can learn, adapt, 
and update to track the new “normal.” Additional 
human analysis, processes, checks, and institutional 
infrastructure will always be required to identify and 
address newly emergent transaction problems, intro-
ducing additional delays, costs, and complexities into 
automated detection systems. However, automatic 
models provide an important capability to help iden-
tify financial network changes and threats. 

CONCLUSION

In conclusion, a range of capabilities are available to 
improve the resilience and performance of distrib-
uted financial networks. This study demonstrates 

several features of a complete solution. First, trans-
actions among firms, like the credit card transactions 
captured in the Mastercard data [7], produce complex 
networks. Data backups at the firm level provide an 
important resilience capability, but consideration 
must also be given to the network structure and 
the relationships among banks. We provide a set of 
metrics to check the balances among banks and iden-
tify problems early and efficiently. 

Second, we find Bayesian network models can auto-
matically recognize changes in the financial network. 
Moreover, the causal relationships that comprise these 
models can be queried to provide additional infor-
mation about how the system has changed. While 
such models are used to explore fraud identification 
in our setting, they can also be adapted and focused 
to address various other system changes and threats. 

Third these models can be used in an operational 
system to address threats quickly when time is of 
the essence. The detection and response to financial 
network threats require ongoing diligence to ensure 
personnel are trained to respond effectively when 
threats are identified. Addressing them requires a 
range of integrated tools and procedures tailored 
to meet the needs of the financial firm, network, 
and system as no single, “silver bullet” solution 
exists. Instead, improving systems and protecting 
networks requires multiple, integrated solutions that 
reduce errors and address problems from different 
perspectives.
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ENDNOTES
1 The data we worked with was anonymized 

through a hashing process, in which bank and 
Personally Identifiable Information (PII) are 
transformed into arbitrary numerical values, 
thereby ensuring privacy.

2 As Canada’s GDP is about one-tenth the size of 
the US (1.8T PPP (2020) vs. 22T PPP (2019) 
respectively), US transaction data is anticipated 
to be an order of magnitude larger.

3 The following variables are used to construct the 
Figure 4 causal model: b amt – billing amount; 
s amt – settlement amount; m total txn – total 
transaction amount for this merchant in the 
training period (proxy for merchant size); 
txn status – transaction status or purpose 
(e.g., normal request, account status inquiry, 
preauthorized request); cleared – whether or 
not the transaction cleared within a week; term 
attend – is the terminal used for the transaction 
human-attended?; term input – input method 
for the terminal; entry md – terminal entry 
mode (PIN entry capability); term loc – termi-
nal location (on or off premise, or no terminal 
used); card cap – does the terminal used have 
card capture capabilities?; holder present – is 
the cardholder present for the transaction? (if 
not, order method, such as phone or electron-
ic); card present – is the card present for the 
transaction?; response – response code (approval 
or decline with reason); CAT lvl – if relevant, 
Cardholder Activated Terminal (CAT) security 
level of transaction; [crypto, gambling, restau-
rants, airlines] – merchant category for this 
transaction.
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