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Abstract 

The consequences of climate change will depend on homeowners’ incentives to man-

age their risk. We show that low home equity distorts borrowers’ demand for flood 

insurance by shifting their risk to lenders and federally backed mortgage purchasers. 

To isolate the causal effect of home equity on disaster insurance demand, we study 

flood insurance take-up over the housing boom and bust across markets with different 

price dynamics. Insurance take-up follows rising and falling home equity. Mechanism 

tests suggest that mortgage default acts as implicit insurance for borrowers with low 

home equity. Consequently, leveraged households do not fully internalize their climate 

risk. 
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1 Introduction 

Since 1980, the United States has seen more than $1.7 trillion in damages from major 

natural disasters, with environmental risk expected to grow over time with climate change 

(Dahl et al., 2018).1 The economic costs of climate change in residential real estate markets 

will depend on how disaster risk is shared and priced by homeowners, lenders, insurers, 

and governments. Despite growing risk – and historically subsidized premiums – millions of 

flood-prone properties remain uninsured for flood damage. Identifying the causes of this flood 

insurance demand gap is critical for understanding how the incentives faced by households 

will shape the consequences of climate change in real estate markets. 

This paper provides the first evidence that low home equity can distort borrowers’ dis-

aster insurance demand. We find that flood insurance take-up followed the rise and fall of 

home prices over the U.S. housing boom and bust of the 2000s. Moreover, the relationship 

between home prices and flood insurance demand cannot be easily explained by changes in 

the number or value of homes at risk, demographic changes, flood insurance regulations, or 

wealth and liquidity effects. Rather, our results suggest a risk shifting channel, where lever-

aged households have less incentive to purchase flood insurance because mortgage default 

acts as a form of implicit insurance where their costs of default are the deductible. 

These findings suggest that leveraged households do not fully internalize their environ-

mental risk because part of their risk is transferred to lenders instead. Lenders, in turn, 

can rely on mortgage securitization and credit rationing to reduce their disaster risk expo-

sure (Laux et al., 2017; Ouazad and Kahn, 2019; Keenan and Bradt, 2020; Sastry, 2021; 

Bakkensen et al., 2023). The government-sponsored enterprises (GSEs) that underwrite 

residential mortgage securitization do not price disaster risk or enforce mandatory flood in-

surance purchase outside of floodplains. As a result, taxpayers bear the remaining risk, along 

with obligations from a host of post-disaster public transfers (Deryugina, 2017; Billings et al., 

2019). As long as neither homeowners nor lenders bear the full cost of disasters, homes in 

risky areas will receive an implicit subsidy, creating a distortion that will grow with increasing 

climate risk. 

We estimate the effect of home equity on the demand for flood insurance from the Na-

tional Flood Insurance Program (NFIP). The main challenge to establishing such a causal 

relationship comes from the correlation between equity and other determinants of insurance 

demand, such as income and disaster risk. To overcome this obstacle, we use the sudden 

variation in home prices from the housing boom and bust in the 2000s, which drove similar 

changes in home equity. This cycle created price variation within and across housing mar-

1See https://www.ncdc.noaa.gov/billions/. 
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kets driven primarily by changing land values and independent of gradual changes in flood 

risk, economic fundamentals, and demographics. Therefore, this setting is ideal for isolating 

the effect of home equity on flood insurance demand from that of the value of the physical 

structure at risk and other confounding factors. 

We find a large, positive relationship between home prices and flood insurance take-up 

during this period. For a measure of the housing boom, we use estimated structural breaks 

in the home price trends of each metropolitan statistical area (MSA) between 2003 and 

2005 from Charles et al. (2018). Figure 1 provides a reduced-form depiction of our results 

in the raw data. The left panel shows that MSAs with larger housing booms saw greater 

increases in flood insurance take-up between 2002 and 2007, which roughly correspond to 

the beginning and the peak of the boom. The right panel, in contrast, shows that as housing 

booms turned into busts from 2007 to 2012, the MSAs with the largest initial booms had 

the lowest growth in flood insurance policies. 

Our difference-in-differences specification exploits variation in the timing and magnitude 

of housing booms across MSAs and tracks the dynamics of home prices and flood insurance 

take-up over the boom-bust cycle. The results shows that flood insurance take-up closely 

follows the dynamics of home prices, has no pretrends, and is robust to controlling for annual 

income, housing turnover, population, employment, and recent floods. Using data from a 

new state-of-the-art flood risk model, we also include flexible controls for risk-dependent 

trends in flood insurance take-up. Using housing boom size and timing as instruments in an 

instrumental variable (IV) framework, we estimate a home price elasticity of flood insurance 

take-up around 0.3. We also run a series of robustness checks to verify that the effect 

reflects voluntary purchases and to address concerns about the exclusion restriction for our 

instrument. 

These results are broadly consistent with a “risk shifting” effect suppressing flood insur-

ance demand. For highly leveraged households, the option of mortgage default or bankruptcy 

after a disaster can act as a high-deductible substitute for formal insurance, shifting part of 

the expected flood damage away from them. Since the housing boom and bust might affect 

other possible drivers of flood insurance demand, we conduct an extensive set of analyses 

aimed at distinguishing risk shifting from alternative mechanisms. We start by assessing 

the extent of risk shifting using the empirical distribution of flood claims combined with 

loan-level data on mortgages. We find that borrowers’ incentives from risk shifting strongly 

align with flood insurance take-up over the boom-bust cycle. Motivated by this finding, we 

further test three predictions from this mechanism. We find that the home price elasticity 

of flood insurance take-up is significantly higher in states with borrower-friendly judicial 

foreclosure laws that reduce the credit consequences of mortgage default. The elasticity is 
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also higher where homes are more exposed to large “tail-risk” flood events that are more 

likely to push the owners of damaged homes into negative equity. Finally, take-up during 

the housing bust declines the most for homes built at the peak of the boom — a group that 

was highly leveraged with little home equity at the market’s nadir. 

On the other hand, we find little support for wealth effects or changes in liquidity as 

the main mechanism. The home price elasticity we estimate is an order of magnitude larger 

than existing estimates of wealth effects on insurance demand. Inconsistent with a wealth 

shock channel, we estimate a large effect of home equity on extensive margin flood insurance 

take-up but null effects on intensive margin demand through supplemental coverage and 

deductible choices. We also find little evidence that homeowners used their increased access 

to liquidity over the boom to avoid policy lapsation. While we cannot fully rule out these 

and other possible alternative explanations as contributing somewhat to our main findings, 

our heterogeneity tests described above and outcomes across intensive and extensive margins 

point towards an important role for risk-shifting. 

This paper provides novel insights into the determinants of flood insurance demand. 

We are the first to estimate the causal effect of home prices on disaster insurance take-

up, revealing an economically important relationship.2 We also test various mechanisms 

of how low home equity may limit flood insurance demand, offering new explanations for 

the insurance gap to complement studies on the role of adverse selection and information 

frictions (Gallagher, 2014; Mulder, 2019; Wagner, 2021; Mulder, 2021; Collier et al., 2021), 

affordability issues (Netusil et al., 2021), and disaster aid (Billings et al., 2019; Kousky 

et al., 2018). Our findings suggest that mortgage default can insure households against 

climate shocks, albeit at the social cost of reducing incentives to formally insure or invest in 

adaptation. 

Our results also extend the broader insurance literature studying the sources and ef-

fects of implicit insurance. Mahoney (2015) finds that bankruptcy acts as implicit health 

insurance and that a higher cost of bankruptcy induces greater insurance demand, while Gal-

lagher et al. (2020) shows that relying on bankruptcy for implicit health insurance crowds 

out precautionary saving. Similarly, Finkelstein et al. (2019) find that the availability of 

uncompensated care to uninsured patients can explain their low willingness to pay for for-

mal health insurance. However, it was less clear whether these incentives documented in 

health insurance would hold in the real estate context. Recent studies have found mixed 

evidence of strategic default, but point to “double trigger” events - simultaneous income 

2Several studies have examined how insurance take-up in the NFIP is correlated with various factors 
(Kriesel and Landry, 2004; Kousky, 2011; Atreya et al., 2015). Typically, the analysis involves regressions 
that include home values as one of the covariates but not a formal treatment of unobserved confounding 
variables. 
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and equity shocks - as the main drivers of mortgage default (Foote et al., 2008; Guiso et al., 

2013; Scharlemann and Shore, 2016; Bhutta et al., 2017; Fuster and Willen, 2017; Gerardi 

et al., 2018; Ganong and Noel, 2020). In the context of climate risk, we note that natural 

disasters are classic examples of such double trigger events. Furthermore, they often make 

homes and neighborhoods uninhabitable for some time, removing one of the key barriers to 

mortgage default. 

Finally, this paper relates to how home prices and equity affect household decisions. An 

extensive set of studies have shown that high mortgage leverage and negative equity reduce 

incentives to invest in home improvements and labor search (Melzer, 2017; Donaldson et al., 

2019; Bernstein, 2021). A finance literature has also studied risk-shifting behaviors by firms 

when their financial condition deteriorates or in instances where debt levels are high (e.g. 

Eisdorfer, 2008; Acharya and Viswanathan, 2011). We show that similar forces can reduce 

investment in climate risk management. Given a growing literature suggesting that climate 

change may already be influencing home prices, our estimates will be relevant to ongoing 

policy discussions around how climate change will affect financial and insurance markets.3 

The rest of this paper proceeds as follows. Section 2 describes our data and key features 

of the National Flood Insurance Program and the housing boom and bust. Section 3 explains 

our empirical design, Section 4 describes the main causal estimates and Section 5 tests for 

the mechanism, and Section 6 concludes. 

2 Data and Background 

We construct an MSA-level dataset that contains measures of flood insurance take-up, 

home prices, and various MSA characteristics, such as flood risk, foreclosure laws, and de-

mographics. Our final estimation sample consists of quarterly observations from 267 MSAs 

during the years 2001 to 2015. In this section, we introduce our data sources and provide 

background information about the National Flood Insurance Program and the housing boom 

and bust. 

2.1 The National Flood Insurance Program 

Our flood insurance data come from the National Flood Insurance Program (NFIP). The 

NFIP is a publicly run insurer under the Federal Emergency Management Agency (FEMA) 

3See the related literature studying how climate and disaster risk are capitalized into home prices (Bern-
stein et al., 2019; Baldauf et al., 2020; Keys and Mulder, 2020; Murfin and Spiegel, 2020; Ortega and 
Taspınar, 2018) and how disasters affect housing markets (Boustan et al., 2012, 2020; Gibson and Mullins, 
2020; Kousky, 2010; Zivin et al., 2022). 
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that writes over 95 percent of flood insurance policies in the United States (Kousky et al., 

2018). Established in 1968, the NFIP covers 22,000 communities with more than five million 

policies in force nationwide during the sample period. In each community, FEMA defines 

the Special Flood Hazard Area (the SFHA, or “100-year floodplain”) where the annual flood 

risk is at least 1 percent. The NFIP sets premiums using a national standard that depends 

on the property’s flood zone designation and structural characteristics (Kousky et al., 2017). 

Because the flood maps are infrequently updated and NFIP has no means-tested subsidy, 

the home price changes we studied did not induce any response in insurance pricing (see 

Appendix Figure A4). 

The NFIP, through various federal agencies and GSEs that purchase and insure mort-

gages, makes flood insurance purchase mandatory on any home that is purchased inside 

the SFHA with a federally-backed mortgage (henceforth the “mandatory purchase require-

ment”).4 However, this mandate was not always well enforced (Hecker, 2002). Outside the 

SFHA, homeowners have no federal requirement to purchase flood insurance. The overall 

take-up rate in the NFIP has been low, despite premiums often being lower than actuarially 

fair rates (Michel-Kerjan, 2010). 

We obtain policy-level data from the NFIP public database released on OpenFEMA 

(OpenFEMA). This dataset covers the universe of NFIP policies written since 2009 with 

variables including property zip code, policy effective date, construction year, and a suite 

of policy characteristics, such as deductible and coverage limits. We extend our policy data 

back to 2000 using a similar database of policies shared with the Wharton Risk Center by 

the NFIP for research purposes. The two datasets contain similar sets of variables, allowing 

us to construct a consistent and comprehensive record of all NFIP policies written from 2000 

to 2015. We aggregate the number of one-to-four family residential policies active at the end 

of each quarter into a quarterly MSA-level panel of flood insurance take-up for 2001–15. As 

shown in Table 1, MSAs have on average about 10,500 active policies, of which around 40 

percent are located outside the SFHA. 

The richness of our flood insurance data allows us to construct separate take-up measures 

for different subsets of policies. For example, we can calculate take-up for only those poli-

cies covering properties outside SFHAs, a feature that allows us to test the effects of home 

price changes on take-up independent of the mandatory purchase requirement enforced in-

side SFHAs. We also test other demand-related outcomes, such as the coverage amounts, 

deductibles, and renewal rates. 

4For more details on the mandatory purchase requirement, see https://riskcenter.wharton.upenn.edu/wp-
content/uploads/2019/10/The-Mandatory-Purchase-Requirement-September-2019.pdf. 
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2.2 Housing Boom and Bust 

The variation we use to estimate the home price elasticity of flood insurance demand 

comes from the US housing boom and bust over the mid-2000s. During this period, average 

national home prices increased dramatically, peaking around 2007, before beginning a sharp 

decline that reached its trough in 2012. 

These housing dynamics have inspired an extensive literature on their causes and conse-

quences. Although active debate remains on the original cause of the cycle,5 a few consistent 

empirical observations have emerged. The housing price changes were highly heterogeneous 

across markets, with some seeing sudden price acceleration, and others experiencing smooth 

changes throughout. More importantly, the sudden variations cannot be explained by any 

similarly large break in market fundamentals, such as productivity or demographics, that 

affect house prices (Sinai, 2012). Instead, surveys of home buyers at this time suggest they 

held strong investment motives and unrealistic beliefs about the long-term growth of prop-

erty values (Case and Shiller, 2003). Together, these observations led to the widespread view 

that these dramatic price changes represented growing buyer optimism about future price 

growth (Kaplan et al., 2020). 

This feature of the housing boom and bust—the sudden break in home prices relative to 

otherwise smoothly changing fundamentals—has been used in a related literature to study 

the relationship between home prices and other economic outcomes. To illustrate this vari-

ation, Figure 2 plots 2001–2005 housing price trends in four markets. In Athens (top left) 

and Galveston (bottom left), the housing price index increases linearly without any notice-

able breaks, whereas a clear break in trend occurs in 2004 in both Tucson (top right) and 

Naples (bottom right). The latter pattern motivates a procedure, pioneered by Ferreira 

and Gyourko (2011), to identify a single trend break in each MSA’s home price time series 

during 2001–2005. The structural break instrument is then calculated as the change in the 

slope of the time trend. For markets without a clear break, the procedure still identifies a 

“break” but with a minimal estimated size. This procedure is used in Charles et al. (2018) 

to construct the structural break instrument for a broader set of MSAs and eventually to 

investigate the relationship between educational attainment and labor market opportunities 

provided by the boom. The authors find that the instrument is economically relevant to 

changing house prices and highly correlated with the size of each MSA’s subsequent housing 

bust. 

Our analysis directly adopts this measure of structural breaks. Figure A1 plots the size 

and timing of these breaks across our sample of MSAs. Although the method identifies the 

5See Mayer (2011) for a useful survey of this literature. 
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most likely break for every MSA, all the pre-2003 breaks are close to zero. Such MSAs 

effectively form a control group that saw smooth price changes during the period. The 

majority of large and positive breaks occurred between 2003 and 2005. Figure A2 maps 

the geographic variation in break size. Although coastal housing markets tended to have 

larger breaks than inland ones, different coastal markets varied substantially, allowing us to 

identify the effect of the boom independent of the underlying flood risk level. 

As the instrument captures the change between the pre- and post-break house price 

trends, our key identification assumption is that unobserved factors in flood insurance de-

mand continued to evolve smoothly in parallel trends between MSAs with different price 

trend breaks over the course of the boom and bust. Charles et al. (2018) present a series 

of empirical tests suggesting that underlying economic conditions and amenities in housing 

markets run smoothly even across the structural break in the housing market. In particular, 

the breaks are uncorrelated with pre-boom trends and levels in home prices, post-secondary 

education enrollment, employment, and wages. 

For identification based on MSAs with different break timing or magnitudes, the key 

assumption is that their flood insurance demand would have continued on parallel trends, 

as in other difference-in-difference settings. We discuss these assumptions in more detail in 

Section 3. 

2.3 Other Data 

Our analysis also uses the following data sources for mechanism tests and regression 

controls. 

Home prices. To measure home prices at the MSA level, we obtain the quarterly House 

Price Index (HPI) from the Federal Housing Finance Administration. The HPI measures 

changes in single-family home values using a weighted, repeat-sales methodology on millions 

of home sales, covering 363 metropolitan areas. 

Flood risk. We also obtain a new national flood risk measure from the First Street Foun-

dation (2020). The First Street Foundation Flood Model (FSF-FM) combines hydrological 

models, fine-resolution land cover and elevation data, and inventories of flood adaptation 

infrastructure to accurately estimate expected flood depths across the entire continental 

United States. This property-level measure allows us to construct multiple MSA-level mea-

sures that capture different aspects of flood risk in the given MSA. See Appendix C.1 for 

more details on these measures. 

Foreclosure law. One of our mechanism tests relies on variation in foreclosure laws across 

states. We follow Demiroglu et al. (2014) to classify states as following judicial or non-
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judicial foreclosure proceedings.6 See Appendix C.2 for more details on the background of 

judicial foreclosure laws. 

Additional covariates. For controls in our models, we include MSA-level log annual 

income, population growth, and the employment rate from the Bureau of Economic Analysis, 

and we also include residential housing transaction volume and share of foreclosure sales that 

we calculate using data from CoreLogic. 

Loan-level data. To measure how home equity varies across markets over the housing 

boom-bust cycle, we use the CoreLogic Loan Level Market Analytics (LLMA) database. 

The LLMA data are from a national sample of loans that include detailed characteristics at 

origination and monthly data on payments, outstanding balances, and performance over the 

life of the loans. For every active single-family purchase loan, we measure its outstanding 

balance and LTV at origination and its outstanding balance in March of 2000, 2007 and 

2012 with geography at the CBSA level. Combining these data points with the FHFA HPI 

and NFIP Flood Claims data, we estimate loan-level flood risk shifting, i.e. the share of 

expected flood losses exceeding borrower equity. These calculations are described in detail 

in Appendix C.3. 

CoreLogic collects its LLMA data from large mortgage servicers. Our sample includes 

over 50 million loan-level balance snapshots from 239 CBSAs for a geographically diverse 

sample. In the first quarter of 2012, the LLMA dataset sample with non-missing geographic 

information contains 35% of the total value of single-family mortgage purchase originations 

(Federal Reserve Bank of New York, 2022). 

3 Methodology 

This section describes our empirical specifications. The first specification uses the housing 

boom structural breaks as a continuous difference-in-difference treatment to estimate the 

reduced-form relationship between the housing boom and flood insurance take-up. The 

second adapts these structural breaks as instrumental variables to estimate the home price 

elasticity of flood insurance demand. We conclude the section by describing empirical tests 

to examine the underlying mechanism. 

3.1 Housing Boom Event Study 

We start with a difference-in-differences event study framework to compare flood in-

surance take-up across MSAs with different boom intensities and timing. The estimating 

6See footnote 2 of Table 1 for a complete list of judicial-review states. 
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equation is 

24X 
lnNF IPmt = ατ (P ostmt

τ × ΔPm) + δ0Xmt + λm + λt + εmt. (1) 
τ =−9 

The main dependent variable lnNF IPmt is the inverse hyperbolic sine (IHS) transformation 

of the number of NFIP policies in MSA m at quarter t. Our main regressors are a set of 

interaction terms, together capturing an event time frame starting from nine quarters before 

the structural break in home prices and extending to 24 quarters after. The variable P ostτ 
mt 

is an indicator of the τ -th quarter after the housing boom starts in MSA m. 7 Each indicator 

is interacted with ΔPm, the structural break intensity in each MSA, as described in Section 

2.2. The model includes a vector of controls, Xmt, which contains annual per capita income, 

home transaction volume, and total NFIP claims in the preceding four quarters, all of which 

are IHS transformed, population growth, employment rate, and the average FSF-FM risk 

score interacted with year indicators to control for differential time trends based on risk 

levels. The model also includes an MSA fixed effect λm to control for time-invariant features 

of the MSA, such as its baseline flood risk and amenities, and a quarter-year fixed effect λt 

to control for national trends in flood insurance take-up. 

The ατ s are our coefficients of interest. Together, they capture the dynamics of the 

outcome variable over the boom-bust cycle, normalized by the initial boom size. The key 

identifying assumption in Equation (1) is parallel trends: MSAs with different housing boom 

intensities would have experienced similar changes in flood insurance take-up in the absence 

of the home price fluctuations around the housing boom and bust. We can partially test this 

hypothesis by examining whether the pre-boom βτ coefficients are zero. 

We also assess observable differences between housing markets with different cycles to 

inspect for factors that may be correlated with differential trends around the boom. Table 

A1 displays measures of flood risk from the Flood Factor model and flood insurance demand 

in the first quarter of 2001 across terciles of the housing boom structural break. The table 

shows that housing markets with larger housing booms tended to have greater flood risk and 

more flood insurance policies before the boom. Despite these level differences, there is no 

evidence of positive pre-trends in flood insurance take-up in MSAs that experienced larger 

boom sizes (see Appendix Figure A3 for 2001–2003 take-up trends in the raw data across 

terciles of the structural break). Nevertheless, one might still be concerned that areas with 

higher flood risk could have seen an increase in flood insurance demand around the housing 

boom. That concern motivates our decision to include flood risk controls interacted with 
7The first indicator, P ost−9 

mt, also includes observations earlier than the start of the event time frame. 
The last indicator, P ost24 

mt, also includes those later than the end of the event time frame. 
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year in all of our baseline specifications, making our estimates robust to differential trends 

by flood risk. 

We also estimate Equation (1) with the IHS-transformed home prices as the outcome 

variable. Because each βτ is estimated flexibly, we can assess whether the dynamic effects 

of the housing boom and bust were similar across both flood insurance take-up and home 

prices. This provides an additional measure of plausibility to the parallel trends assumption 

given that any violation would need to match these boom and bust dynamics. 

Under the parallel trends assumption, Equation (1) estimates the reduced-form effect of 

the housing boom and bust on flood insurance demand. 

3.2 Instrumental Variables 

The housing market structural breaks can be used as instruments to directly estimate the 

relationship between take-up and home price changes. In this framework, Equation (1) can 

be reinterpreted as the reduced-form relationship between the outcome and the instrument. 

We implement a two-stage least square (2SLS) estimation in which the first-stage regression 

is 
24X 

lnHP Imt = ρτ (P ostτmt × ΔPm) + µ 0Xmt + γm + γt + ωmt. (2) 
τ =0 

The house price index (lnHP Imt) is our endogenous variable. We instrument the IHS-

transformed house price index by the set of interaction terms between the event-time indi-

cators and the structural break intensity (P ostτ × ΔPm), exploiting essentially the samemt 

variation in Equation (1). The only difference is that this equation excludes pre-boom inter-

actions, because they do not capture meaningful variation from the boom-bust cycle. The 

second-stage equation is 

\lnNF IPmt = β · lnHP Imt + δ0Xmt + λm + λt + εmt. (3) 

\ are the instrumented values of the house price index from Equation (2).lnHP Imt The 

equation includes the same set of controls as before. 

Equation (3) estimates a single β coefficient that we interpret as the home price elasticity 

of flood insurance demand. 

Exclusion Restriction 

For our home price elasticity coefficients to be consistent in the IV framework, the ex-

clusion restriction must hold. Given that the outcome of interest is flood insurance take-up, 

our first necessary assumption is that the house price trend breaks were uncorrelated with 
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any changes in flood insurance demand outside of the home price channel. This assumption 

is supported by a body of research that suggests that most other economic fundamentals, 

including construction costs, were smoothly changing in the markets that saw these sudden 

price changes (Ferreira and Gyourko, 2011; Sinai, 2012). 

Nonetheless, several plausible violations of the exclusion restriction are specific to our 

setting. We use a variety of approaches to address these concerns, as detailed below8: 

1. Increased home sales: If new homeowners—especially those subject to the insurance 

mandate for SFHA properties—have a higher propensity to buy flood insurance, more 

home sales can mechanically create an increase in take-up. We address this in two 

ways. First, we control for home transaction volume in all regressions. Second, we 

separately examine the take-up of non-SFHA policies, which are not required by the 

insurance mandate. A similar or larger trajectory would suggest the mandate is not a 

major driver of the take-up response. 

2. New construction in risky areas: To explore this possibility, we subset to policies on 

structures that are built before 2003. If the take-up response is robust among this set 

of policies, new construction is not likely the main pathway. 

3. Home renovations: Renovated homes might have a higher physical replacement cost, 

prompting homeowners to purchase insurance. To investigate this channel, we examine 

the amount of building coverage purchased by policyholders as a dependent variable. 

This is usually commensurate with the insured structure’s replacement value, so we 

would expect to see more coverage being purchased on the intensive margin if home 

renovations were driving the extensive margin increase in take-up. 

4. Labor market conditions: If the housing booms improved labor market opportunities, 

residents may have become better able to afford flood insurance (Ferreira and Gyourko, 

2011; Charles et al., 2019). To account for this possibility, we control for annual MSA 

income and employment rate in all regressions. 

5. In-migration: Because the housing booms might also be associated with greater net 

in-migration, we control for population growth rate. 

3.3 Heterogeneity Tests 

The last part of our analysis uses a series of heterogeneity tests to evaluate the risk 

shifting mechanism as a potential driver of the relationship between flood insurance take-up 
8For those concerned that the covariates discussed below are bad controls, Figure A5 shows that our 

results are similar using only MSA and quarter-year fixed effects. 
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and home prices. The theoretical motivation behind these heterogeneity tests is described 

by our illustrative model in Appendix B.2. 

Our first test stems from the insight that flood insurance demand in MSAs with lower 

default costs should be more responsive to changes in home equity. We exploit differences 

in state foreclosure laws that drive variation in default costs. As discussed in Appendix 

C.2, judicial foreclosure laws raise lenders’ costs of pursuing a foreclosure, thus reducing the 

credit risk of default for households after disasters. 

A second prediction is that flood insurance demand in MSAs that have a larger fraction 

exposed to tail risk flood events that cause negative equity should also be more responsive to 

changes in home equity. Our measure of tail risk, constructed with the property-level First 

Street Foundation Flood Model, is described in Appendix C.1. 

To formally test these predictions, we extend the 2SLS procedure to estimate heteroge-

neous effects based on foreclosure laws and flood risk. We do this by adding an interaction 

term between home prices and an indicator variable for MSAs with judicial foreclosure laws 

(or above-median flood risk) to the second-stage equation and then instrumenting for it using 

a corresponding interaction between the structural break instrument and the indicator. For 

details on this extended framework, see Appendix E. 

As a third test of the risk shifting channel, we focus on the flood insurance demand 

response to the housing bust, comparing the change in take-up between homes built at the 

peak of the housing boom (2003-2005) to that among homes built before 2003. Homes built 

during the boom were more likely to be leveraged and to face low or negative equity over 

the housing bust. Thus, this segment of the housing market should be more responsive 

to declining home equity during the bust than existing homes. To test this prediction, 

we employed a first-difference specification to separately estimate effects of home prices on 

flood insurance take-up for each cohort during the bust. For details on this specification, see 

Appendix F. 

4 Results 

4.1 Dynamics of Insurance Choices Over the Boom-Bust Cycle 

To investigate the dynamics of our main outcomes over the boom-bust cycle, we start 

with the difference-in-differences framework. We first estimate Equation (1) over the housing 

price index. The result is shown in the top panel of Figure 3. Each coefficient corresponds 

to a quarter relative to the start of a housing boom and estimates the relationship between 

the size of each MSA’s house price trend break and its home price dynamics. As expected, 
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these coefficients trace out a boom-bust cycle with an initial increase, a peak at the end 

of the third year after the start of the boom, and a subsequent decline. This shows that 

MSAs with larger structural breaks also experience larger fluctuations in home prices as 

the housing bubble unfolds. A one-standard-deviation increase in the initial boom size is 

associated with roughly 15 percent higher home prices at the peak. Little evidence supports 

a meaningful pre-trend, suggesting that these instruments effectively capture the timing of 

the sudden breaks in housing price trends. 

The bottom panel of Figure 3 shows the results of Equation (1), with flood insurance take-

up as the dependent variable. Consistent with the raw correlation in Figure 1, MSAs with 

larger home price structural breaks saw a larger increase in flood insurance policies. More 

importantly, the dynamic pattern of take-up closely follows that of house prices, peaking 

around the same time (three years after the start of the boom) before declining. A one-

standard-deviation increase in the initial boom size is associated with a 5 percent higher 

flood insurance take-up at the peak. No evidence indicates a pre-trend, supporting the 

validity of the parallel trends assumption. 

Figure 3 suggests that the housing boom-bust cycle had similar dynamic effects on both 

home prices and flood insurance take-up. These closely aligned trajectories suggest a direct 

relationship between the two, but alternative channels (described in Section 3.2) remain and 

may explain these changes in take-up. Below, we rule out these other factors as driving our 

results. 

We first show that the increase in take-up was not caused by the mandatory insurance 

purchase requirement for homeowners with federally-backed mortgages or by new construc-

tion in the SFHA. If more properties are transacted and constructed in the SFHA during 

the boom, it might mechanically drive take-up through the mandate. To test this, we re-

estimate Equation (1) over two subsamples of NFIP policies. The first subsample includes 

only policies written on structures built before 20039 and outside SFHAs that have no insur-

ance mandate. For comparison, the second subsample includes only policies written inside 

SFHAs. These results are shown in Figure 4. The contrast between the two panels is strik-

ing: The estimated effect for pre-2003 non-SFHA policies is very similar to the full-sample 

estimates and much larger than the SFHA subsample estimates. This suggests that our 

findings are not driven by the insurance mandate or new construction. The small estimated 

effect inside the SFHA is also consistent with the insurance mandate lowering the elastic-

ity of demand, as a relatively small number of households are on the margin of voluntarily 

purchasing insurance inside the SFHA. 

Next, we also show that the increase in demand was not driven by more home renova-

9Figure A1 shows that the vast majority of notable booms occurred in or after 2003. 
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tions, which could increase the property value at risk of flood damage, leading to higher 

insurance demand. If this were the case, we would expect homeowners to purchase more 

building coverage, since 80% of policyholders purchase coverage equal to or greater than 

the replacement value of their home (Collier and Ragin, 2020).10 To test this, we estimate 

Equation (1) on the IHS-transformed average amount of building coverage. These results 

are shown in Appendix Figure A6. We see little evidence of an increase in the intensive 

margin of coverage purchased on non-SFHA policies, suggesting that homeowners were not 

insuring more valuable structures. In contrast, the amount of coverage purchased on SFHA 

policies did increase over the boom, but did not decline over the bust. This is consistent with 

SFHA policyholders complying with minimum coverage requirements under the mandatory 

purchase requirement as mortgage balances increased over the housing boom.11 

Using the same estimation framework, we examine other margins of the insurance decision 

to test whether risk preferences or perceptions changed over the course of the boom-bust cy-

cle. Figure A8 shows the estimates of the share of newly enrolled SFHA policies with supple-

mental contents coverage.12 A slight increase occurs following the start of the housing boom, 

but the magnitude is statistically insignificant and very small: A one-standard-deviation in-

crease in boom size is associated with a 0.7 percentage point increase in the share of policies 

with contents coverage. Figure A9 shows the dynamics of the share of newly enrolled SFHA 

policies with the standard deductible,13 which is largely unresponsive to the boom. These 

results suggest that risk preferences and perceptions are quite stable across the boom-bust 

cycle. 

4.2 Home Price Elasticity of Flood Insurance Demand 

In this section, we go from studying the dynamic reduced-form effect of the housing boom 

and bust on flood insurance demand to directly estimating the home price elasticity of flood 

insurance demand. Building on our findings, which suggest home prices were the primary 

channel affecting flood insurance demand, we use our instrumental variable framework to 

estimate the effect of a given change in home prices on take-up. 

10The NFIP currently allows for a maximum building coverage of $250,000 for each r family residential 
structure. In the sample, the average coverage is $133,051 for SFHA policies and $164,286 for non-SFHA 
ones. 

11The minimum required coverage is the least of (1) the unpaid principal balance of the mortgage; (2) the 
maximum available coverage ($250,000); or (3) 100 percent of the replacement value of the structure. 

12Contents coverage protects the value of personal belongings that might be damaged by flooding. It is 
separate from the building coverage and not subject to the mandatory purchase requirement. Contents and 
structure coverage are bundled for non-SFHA policies. 

13All non-SFHA policies have a standard deductible of $500. SFHA policyholders can choose either the 
standard deductible or a larger deductible at a different premium. 
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We estimate the home price elasticity of flood insurance demand using the 2SLS estimator 

described in Equations (2) and (3). The results are reported in Table 2. The first column 

displays the estimate based on all policies. The coefficient on the instrumented housing price 

index is positive and statistically significant at around 0.31. This implies that, on average, 

a 1 percent increase in home prices is associated with an approximately 0.3 percent increase 

in flood insurance take-up. In columns (2) and (3), we separately estimate this coefficient 

for SFHA and non-SFHA policies. Consistent with the patterns in Figure 4, the estimated 

elasticity of SFHA take-up, around 0.21, is much smaller than that of non-SFHA take-up 

(0.48). When we further subset to non-SFHA policies on homes built before 2003, we obtain 

an estimate of 0.33, again showing that the main effects are not due to new construction. 

All four columns have first-stage F-statistics14 of over 30, confirming the strength of the 

instruments, and they include controls for MSA income, home sale volume, and time-varying 

effects of flood risk. 

These estimates reflect the magnitude of the effect of home prices on flood insurance 

take-up. To put them into context, several studies have estimated an own-price elasticity of 

flood insurance demand between −0.3 and −0.1 (Kriesel and Landry, 2004; Atreya et al., 

2015; Wagner, 2021; Mulder, 2021). In comparison, our estimates suggest that a 1 percent 

increase in home prices has roughly the same effect on overall take-up as a 2 percent decrease 

in premiums on overall take-up, or the effect of a 3 percent decrease in premiums on non-

SFHA take-up. Kousky (2017) finds that hurricanes are estimated to lead to only 1.5 percent 

increase in voluntary purchases of flood insurance, which is equivalent to a 4.7 percent 

increase in home prices. Given the large variability of housing prices in both the short and 

long run, our results suggest that home prices play a substantial role in flood insurance 

demand. 

4.3 Robustness Checks 

We perform several additional analyses to test the robustness of our specifications and 

measurement of the outcome variable and boom instrument. First, we check that our main 

difference-in-difference result on total policy count is stable under different sets of controls 

(see Figure A5). The corresponding 2SLS estimates are also similar across the board, and 

of the estimates our main specification is the most conservative (see Table A2). 

Second, we obtain similar difference-in-difference estimates by examining the count of 

newly enrolled policies – instead of all active policies – in a given quarter. Because NFIP 

policies are effective for one year, the number of active policies will respond with a lag 

14We follow Sanderson and Windmeijer (2016) in calculating the F-statistic to account for multiple en-
dogenous variables. 
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when existing policyholders want to drop their insurance. In contrast, the number of newly 

enrolled policies, which include newly written policies and renewals each quarter, might 

better capture the behavior of homeowners who are actively making insurance decisions. 

The estimated results on newly enrolled policies are consistent with our results on total 

policies, albeit with some additional noise due to seasonality (see Figure A7).15 Table A3 

reports the 2SLS estimates based on the number of newly enrolled policies, showing that 

these estimates are also similar to the main results. 

In Table A4, we examine two potential issues in our specification of the boom-bust trajec-

tory. First, our main specification allows for heterogeneity in the start time and magnitude 

of each housing boom but imposes homogeneity on the boom-bust dynamics across MSAs.16 

To allow for heterogeneous boom-bust dynamics, we interact the original instruments with 

MSA cohort indicators defined by boom start dates. The regressions based on quarterly and 

annual cohorts are reported in columns (1) and (2), respectively. These estimates are in 

general similar to our main estimate but slightly smaller, which could be due to the addition 

of many weak instruments. 

A second potential issue is addressed in columns (3) and (4), which investigate potential 

misspecification issues related to MSAs with small or negative estimated structural breaks. 

Such estimates likely represent noise in the structural break estimation procedure rather 

than actual variation across MSAs. In column (3), we replace all negative values in the 

boom instrument with zero, which assumes that negative-boom MSAs actually experience 

no boom or bust. In column (4) we expand this set of no-boom MSAs to include those MSAs 

in the lowest quartile of positive booms. Both estimates are slightly larger than the main 

result, which is consistent with a reduction in measurement errors. 

To assess whether our results are contaminated by using the two-way fixed effects (TWFE) 

estimator with staggered treatment timing, we re-estimate our results with the stacked event-

by-event estimator following Cengiz et al. (2019).17 Unlike TWFE with variation in treat-

ment timing, the stacked estimator avoids spurious violation of the parallel trends assump-

15Due to strong seasonal patterns in enrollment, we control for MSA-by-quarter-of-year fixed effects in 
these specifications in place of MSA fixed effects to better account for idiosyncrasies in these patterns across 
MSAs. The results are noisier but very similar to MSA fixed effects. 

16Of particular concern is the timing of when each boom turned into a bust. As described in Ferreira 
and Gyourko (2012), although the beginning of the housing boom was highly heterogeneous across MSAs, 
the timing of peaks was concentrated between the end of 2005 through the end of 2007. In Equation (2), 
imposing equality on the ρτ coefficients across housing boom cohorts might lead to a misspecified first-stage 
estimation. This could also cause a violation of the monotonicity assumption under the IV framework if some 
MSAs experienced home price declines during their busts relative to the pre-boom period. However, the 
coefficients plotted in the top panel of Figure 3 show that relative home prices in MSAs with larger booms 
remain well above their pre-boom levels even by the end of the bust, suggesting that the monotonicity 
assumption generally holds. 

17See Appendix D for more details on our implementation and results. 
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tion that can occur with dynamic and heterogeneous treatment effects (Baker et al., 2021).18 

Figure D1 shows that our estimate of the effect of the housing boom on flood insurance 

take-up is little changed with the stacked estimator. In Table A5, we re-estimate the home 

price elasticity of take-up, applying the stacked estimator to the 2SLS framework. These 

estimates are also similar to our main results, again showing little bias from the staggered 

treatment timing. 

5 Testing for the Risk Shifting Mechanism 

Our results so far have established a robust and plausibly causal connection between 

home prices and flood insurance take-up. In this section, we empirically test whether a 

risk shifting channel might drive our results. When facing major disaster damage, highly 

leveraged households can default on their mortgage to limit losses, in effect shifting some 

of their losses to the debt holder. When home equity increased during the housing boom,19 

defaulting became more costly for households, increasing their willingness to pay for disaster 

insurance. 

In the sections below, we first use loan-level data to show that homeowner’s equity 

exposure to flood risk followed home prices in housing booms and busts. We find that, 

despite the increase in borrowing that accompanied the housing boom, homeowners still saw 

an increase in home equity which created an economically significant change in their exposure 

to flood risk. Then, we test three predictions of this mechanism, motivated by the model in 

Appendix B.2. Our results show that, even among markets or borrowers who experienced 

similar housing booms, the relationship between flood insurance demand and home prices is 

driven by subsets of homeowners and markets where we expect the risk shifting mechanism 

to have the largest effect. 

18See also discussions of this issue in Sun and Abraham (2020), Callaway and Sant’Anna (2020), and 
Goodman-Bacon (2021). 

19Despite a concurrent increase in mortgage debt over the boom, Figure A10 shows that home equity 
increases with house prices over the course of the housing cycle. Some may be surprised to see this result 
given that other sources show increasing current LTVs over the housing boom. To see how both LTV and 
home equity can rise together, consider a homeowner with a $400,000 mortgage on a $500,000 home (and 
thus $100,000 equity and 80% LTV). Suppose the home price doubles to $1,000,000. The homeowner could 
borrow an addition $400,000 against their higher home value, thus maintaining the same LTV, and still have 
doubled their equity. They could borrow up to a 90% LTV – increasing their LTV – and still have higher 
home equity. 
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5.1 Flood Risk Shifting: Evidence from Loan-Level Data 

We define “flood risk shifted” as the share of expected flood damages that would exceed 

a homeowner’s equity. In a default-triggering flood event, this is the portion of the damage 

borne by the debt holder rather than the household. Figure 5 shows how flood risk shifted 

changes as a function of the loan-to-value ratio (LTV), which is calibrated based on the 

empirical distribution of NFIP flood claims.20 Our results do not depend on borrowers 

always defaulting whenever their flood losses exceed their equity. Rather, our measure is 

meant to show the relative changes in flood risk transfers over time and across groups, which 

are consistent even when we add higher default thresholds. It is also worth noting again 

that a post-flood event can act as a “double trigger” – an income shock paired with negative 

equity – that Ganong and Noel (2020) show drive most negative equity defaults. 

As expected, flood risk shifting increases with LTV: The more leveraged the homeowner 

is, the higher the share of the expected damage is shifted away from them. Such shifting can 

be substantial, even for owners with moderate LTVs, but particularly for those with LTVs at 

the higher end. At an 80% LTV, approximately half of expected flood claims would exceed 

homeowner equity. As a summary statistic of the number of borrowers with substantial risk 

shifting, we measure the share of borrowers with “low equity”, which we define as flood risk 

shifted exceeding 33% of expected claims.21 

Figure 6 shows that housing booms increased home equity and decreased flood risk shift-

ing. Using CoreLogic’s loan-level data, we calculate the empirical share of borrowers with 

low equity in MSAs that did not have housing booms (negative or bottom third of struc-

tural break measures) against MSAs that did have housing booms in the first quarter of the 

years 2000, 2007, and 2012.22 Figure 6 shows that MSAs with and without housing booms 

had similar levels of flood risk shifting in 2000, but by 2007, the share of owners with high 

risk-shifting ratios had fallen by 20 percentage points in boom MSAs even as it remained 

constant in MSAs without booms. By 2012, after the bust, the risk shifting gap had again 

closed. 

These results suggest that the price changes over the course of the housing cycle were 

large enough to significantly change the risk exposure of leveraged homeowners who might 

default after a flood.23 Furthermore, the timing and magnitude of changes in flood risk 

20Appendix section C.3 describes these calculations in more detail. 
21The 33% cutoff corresponds to an LTV slightly above 70%, which is where flood risk shifting starts to 

increase more rapidly with LTV. Appendix Figure A11 shows results consistent with Figure 6 across the full 
flood risk shifting distribution. 

22Appendix Figure A11 shows results consistent with Figure 6 across the full flood risk shifting distribution. 
23The LLMA data do not allow us to track smaller second loans, such as home equity loans, originated 

after purchase. While such loans could attenuate the decline in risk shifting from housing booms, owners 
would have to borrow an additional dollar for every dollar in home price appreciation to see no net increase 
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shifting between MSAs with and without housing booms aligns with the changes in flood 

insurance take-up in Figure 3. We formalize this risk shifting mechanism in a model in 

Appendix B. In the following sections, we will test three predictions from the model. 

5.2 Default Costs and Tail Risk Exposure Heterogeneity Tests 

In this section, we test two MSA-level predictions from the risk shifting mechanism 

above. First, we test whether there is a stronger relationship between house prices and flood 

insurance take-up in MSAs with lower default costs than in MSAs with higher default costs. 

This test exploits differences in the baseline cost of default across states with and without laws 

that require judicial review of foreclosure proceedings that reduce the credit risk of default 

for borrowers. In states without judicial review protections, the flood loss threshold where 

uninsured borrowers would default is higher, weakening the relationship between risk shifting 

and home equity. Thus, flood insurance demand should be less responsive to changing home 

prices in states without judicial review if flood risk shifting drives our results. 

Figure 7 plots the coefficients from estimating Equation (1) separately in states with and 

without judicial review over home prices (left panel) and non-SFHA flood insurance take-up 

(right panel). Despite similar home price trends conditional on the initial break size, flood 

insurance demand in judicial review states is much more responsive, which is consistent with 

the risk shifting mechanism. 

Next, we test whether MSAs with greater exposure to tail risks see greater increases 

(decreases) in take-up in response to increases (decreases) in house prices relative to MSAs 

with lower tail risk. The effect of home equity on insurance demand is increasing in the 

probability that flood damage will be large enough to induce default. Using flood risk 

estimates from FSF-FM, we calculate a measure of tail risk exposure for non-SFHA homes 

(see Appendix C.1 for details). We examine how the effect of home equity varies across 

MSAs with above-median versus below-median tail risk exposure.24 Note that all regressions 

control for the time-varying effect of the average risk level. Therefore, any heterogeneity can 

be attributed to the default-inducing part of the risk—that is, the tail risk in the MSA. 

Figure 8 plots the coefficients from estimating Equation (1) separately for these two 

groups of MSAs on home prices (left panel) and non-SFHA flood insurance take-up (right 

panel). Although we see a slight divergence in price trends between the two groups, the high-

in home equity. Most estimates suggest that over the housing boom households only extracted between 
$0.07 (Bhutta and Keys, 2016) and $0.25 (Mian and Sufi, 2011) in home equity for every $1 in home price 
appreciation. 

24One concern with this variable is that MSAs with higher tail risk might also have higher premiums. 
Fortunately for our analysis, almost all non-SFHA properties face uniform rates that have changed little 
over this period, as the NFIP has not developed detailed risk assessments outside of floodplains. 
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tail-risk group has a much larger flood insurance take-up response,25 which is consistent with 

the risk shifting mechanism. 

For the two tests above, we formally test the statistical significance of their findings by 

applying the 2SLS estimator with an additional interaction term between home prices and 

an indicator of judicial review law or above-median tail risk.26 These results are shown in 

Table 3. These estimates confirm the results from our difference-in-differences exercises: 

MSAs in judicial review states and those with high tail risk both have higher home price 

elasticities of flood insurance demand. Moreover, the differences are statistically significant 

and economically large. States with judicial review have a home price elasticity of flood 

insurance demand of 0.67 versus only 0.3 in states without such laws. MSAs with above-

median tail risk have a home price elasticity of flood insurance demand of 0.78, versus 

0.45 in states with below-median tail risk. In columns (3) and (4), we also report the 

estimates on SFHA policies. In sharp contrast to the non-SFHA results, neither margin 

shows notable differential effects. As discussed, given the mandatory purchase requirement, 

SFHA homeowners likely face different incentives and have less room for take-up adjustments. 

5.3 Household-Level Heterogeneity Test 

In this section, we test at the household level whether low-equity borrowers had a par-

ticularly strong response to equity changes during the housing boom-bust cycle. The key 

idea is to compare the change in flood insurance take-up between 2007 and 2012 between 

homeowners who purchased their homes during 2003-05 near the peak of the housing booms 

against those who purchased before the housing boom started. While these homeowners all 

experienced similar housing busts between 2007 and 2012, and thus changes in wealth and 

local economic conditions, those who bought at the peak of the boom ended up with much 

lower home equity and thus more flood risk shifting. Under the risk shifting hypothesis, 

we would expect their flood insurance demand of the 2003-2005 borrowers to decrease more 

during the bust. 

We begin the analysis by verifying that the 2003-2005 cohorts of homeowners experienced 

a more dramatic increase in flood risk shifting during the bust. Figure 9 measures the share 

of leveraged homeowners with flood risk shifting ratios exceeding 33%, whom we call “low 

equity” borrowers, in the first quarters of 2007 and 2012 by loans originated between 2003 

and 2005 (lighter bars) versus those originated before 2003 (darker bars). Panel (a) shows 

that in markets with housing booms, the increase in low equity borrowers was concentrated 

25The divergence in the first stage is captured in our 2SLS estimator, described in the next paragraph, by 
interacting the price trend structural breaks with the above-median tail risk indicators. 

26The precise estimation equations are presented in Appendix E. 
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among loans originated between 2003 and 2005, while loans originated earlier saw little 

increase in risk shifting. In contrast, panel (b) shows that in MSAs without housing booms 

both cohorts experienced similar increases in risk shifting. 

We formalize the intuition from Figure 9 with a first-difference regression of the changes in 

low equity borrowers between 2007 and 2012 over instrumented home price changes interacted 

with borrower cohort indicators as described in Appendix F, with results shown in Table 4, 

columns (1) and (2). Column (1) shows that 1% decrease in home prices over the bust led 

to a 0.55 percentage point increase in low equity borrowers. However, there is substantial 

heterogeneity in this effect based on home purchase timing. Column (2) shows that the entire 

increase in the low equity share can be explained by borrowers who purchased between 2003 

and 2005, whereas those who bought earlier saw little relative increase in their flood risk 

shifting. 

Motivated by these trends in the home equity data, we compare the flood insurance take-

up response during the housing busts for owners of homes built between 2003 and 2005 to the 

take-up response for owners of homes built before 2003.27 We use similar specifications as 

above with log NFIP policies by cohort j and MSA m as the dependent variable.28 Columns 

(3) and (4) of Table 4 present these estimates.29 Column (3) shows that the home price 

elasticity of overall take-up over the bust is 0.38. Yet, when we separate out the policies 

on homes built between 2003 and 2005 in column (4), we find that their elasticity increases 

sharply to 1.4, which is more than four times that of the rest of the policies on older homes. 

These results parallel the estimates of the share of low equity homeowners and are consistent 

with the risk shifting mechanism. 

To sum up, the household-level test also provides strong support for the risk shifting 

mechanism because the cohort of home buyers who saw the largest increase in flood risk 

shifted over the housing bust also had the largest decrease in flood insurance take-up. 

27We use insurance policies on homes built between 2003 and 2005 as a proxy for likely buyers during 
the housing boom because we do not observe home purchase year in the flood insurance policy data. This 
introduces some measurement error into our results because some homes built before 2003 may have been 
bought during the boom, and some homes built 2003 and 2005 may have been bought later during the bust, 
likely attenuating the actual difference in flood risk shifting between the two groups relative to our loan-level 
measures. 

28It is worth noting that the interaction term captures the effect of flood risk shifting on flood insurance 
demand separately from the general equilibrium economic effect of housing busts, while controlling for 
differences in take-up trends between the boom and pre-boom cohorts across MSAs. To control for the effect 
of increased foreclosures on flood insurance take-up, we include the share of sales through foreclosure in the 
housing bust specifications. 

29Table A6 provides similar estimates based on the boom period, as well as a breakdown by SFHA and 
non-SFHA properties. 
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5.4 Further Discussion and Alternative Mechanisms 

In the previous sections, we find strong evidence consistent with all three predictions 

of the risk shifting channel, suggesting that it plays an important role in the relationship 

between home equity and flood insurance take-up. In this section, we assess intensive margin 

insurance demand responses and consider alternative mechanisms based on changes in wealth 

or liquidity over the course of the boom-bust cycle. 

Risk Shifting and Intensive Margin Responses 

In contrast to our results that document the strong effect of the housing boom on ex-

tensive margin flood insurance take-up, we find little effect on intensive margin coverage 

across building coverage purchased, purchase of supplemental contents coverage, and opt-

ing into higher deductibles (Figures A6, A8, and A9). These intensive margin null results 

are consistent with the risk shifting mechanism. As previously mentioned, a large majority 

of NFIP policyholders purchase building coverage near or above their home’s replacement 

cost or else at the coverage cap (Collier and Ragin, 2020), making it an unlikely margin of 

adjustment. In addition, a homeowner who anticipates defaulting past some flood damage 

threshold would be unlikely to partially insure. With respect to other intensive margin de-

cisions, outside the SFHA, contents coverage is bundled with structure coverage and there 

is only one standard deductible choice. Inside the SFHA, given that almost all mortgaged 

homeowners are required to buy flood insurance up to their outstanding balance, we do not 

expect the risk shifting mechanism to apply. However, as discussed below, we would expect 

wealth or other general equilibrium effects to affect these intensive margins of flood insurance 

demand. 

Liquidity Effect 

The housing boom saw a substantial expansion in households’ access to liquidity through 

home equity loans and looser credit conditions (Mian and Sufi, 2011; Bhutta and Keys, 2016). 

If low flood insurance take-up were driven by households being forced to intermittently forgo 

flood insurance to manage liquidity shocks, favorable borrowing conditions might increase 

take-up. 

If greater equity eased liquidity constraints, we would expect more policyholders to renew 

their flood insurance coverage. Over 20 percent of flood insurance policies lapse in their 

second year (Michel-Kerjan et al., 2012), and policy lapsation has been shown to be driven 

by liquidity constraints across various insurance settings (Hambel et al., 2017; Gottlieb and 

Smetters, 2021). 
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To test the liquidity channel, we estimate Equation (1) with the one-year renewal rates as 

the dependent variable. Figure A12 shows these results for SFHA (left panel) and non-SFHA 

(right panel) policies. We see little evidence that the housing boom increased the one-year 

renewal rate for either group of policies, suggesting that liquidity was not likely the main 

factor driving the relationship between home equity and insurance demand.30 

This liquidity channel is also inconsistent with existing evidence on how home equity 

extraction was used over the housing boom. Both Mian and Sufi (2011) and Bhutta and 

Keys (2016) find that home equity loans were used to increase spending on consumption 

and durable goods rather than pay down high interest debt or fund precautionary savings. 

Furthermore, home equity borrowers had much higher default risk over the housing bust. 

Given this evidence that households were not using home equity loans to hedge other sources 

of financial risk, it is unlikely they were using these loans to maintain disaster insurance 
31coverage. 

Wealth Effect 

Our findings might also be consistent with the “wealth effect puzzle”, a pattern found 

in recent studies where insurance coverage increases with wealth (Armantier et al., 2018; 

Gropper and Kuhnen, 2021). This effect contradicts the standard theoretical prediction that 

insurance demand decreases with wealth. To assess the possibility that the same mechanism 

drives our results, we compare the magnitude of effect from these studies with our estimates, 

noting the main caveat that the other studies’ estimates are based on other insurance types. 

In Armantier et al. (2018), the implied elasticity of auto insurance spending with regard to 

home values is 0.07.32 The home price elasticity of life insurance take-up is 0.08 in Gropper 

and Kuhnen (2021).33 Given that our non-SFHA take-up elasticity of 0.48 is much larger 

30We focus on the one-year renewal rate to capture more policy lapsations due to liquidity conditions 
rather than household learning about local flood risk. We find similar results using three- and five-year 
renewal rates as our dependent variables. These results are available upon request. 

31One may wonder whether the risk-shifting mechanism would also predict an increase in renewal rates. 
Any homeowner who bought flood insurance in the previous year presumably thought they had enough 
equity to be worth insuring, which would still be true the next year unless home prices had fallen enough to 
reduce their equity. Consistent with this channel, Table 4 shows a large decline in flood insurance take-up 
over the course of the housing bust among homeowners who were most likely to have low or negative equity. 

32Calculation based on Armantier et al. (2018): Table A8 reports that a $100k increase in home wealth 
is associated with an increase of 0.31 in the “insurance index”. Following the authors’ method of cal-
culation on p.21, this implies a 0.31/1.1*(909-812) = $27.34 increase in cost. Using an average home 
value of $268.52k (Table 3) and average premium of $994.34 (Table 4), we calculate the elasticity to be 
(268.52/100)*(27.34/994.34) ≈ 0.07. 

33Calculation based on Gropper and Kuhnen (2021): Table 3 shows that a $100,000 increase in hous-
ing wealth is associated with a 0.93 p.p. increase in the probability of having life insurance. Us-
ing an average home value of $301,387 and an average take-up of 36% (Table 1), the elasticity is 
(301,387/100,000)*(0.0093/0.36) ≈ 0.08. 
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than both of these estimates, we conclude that the wealth effect is unlikely to be the main 

driver of our results.34 

Beyond this comparison of magnitudes, it is worth explicitly listing how our previous 

results fail to support the wealth effect as a primary driver of our findings: 

• Whereas the wealth effect would predict more demand for intensive margin as well as 

extensive margin coverage, we find little evidence of a positive relationship between 

contents coverage or deductible choice and home prices (Figures A8 and A9) 

• A wealth effect would not predict the higher home price elasticities of take-up in states 

with judicial foreclosure laws or more tail risk as found in the heterogeneity tests 

reported in Table 3. 

• Comparing columns (1) and (2) of Table 3 to columns (3) and (4), a wealth effect would 

also not predict that these heterogeneous elasticities would be present for non-SFHA 

policies where borrowers are typically not required to carry flood insurance but not for 

SFHA policies where federal law requires most borrowers to carry flood insurance. 

• The wealth effect would also not predict that the decline in flood insurance take-up 

over the housing bust would be concentrated among buyers with higher LTVs, as we 

show in Table 4. 

Other General Equilibrium Effects 

Besides the credit, wealth, and risk shifting channels mentioned above, the housing boom 

and bust caused a host of general equilibrium changes in local economies and housing mar-

kets. This study does not rule out all other potential causal channels besides risk shifting 

between flood insurance demand and home prices. However, we do argue that the pattern 

of our results convincingly show that risk shifting plays an economically significant role in 

flood insurance demand. 

Of particular importance to our argument is our heterogeneity findings. We find that 

among MSAs with similar housing cycles, and thus plausibly similar general equilibrium 

changes, the home price elasticity of flood insurance demand was stronger in precisely the 

areas or among subsets of owners within MSAs where we would expect the risk shifting effect 

to be larger. Table 3 shows that the home price elasticity of flood insurance demand was 

stronger in MSAs with borrower-friendly judicial foreclosure laws or where tail risk made 

34Note that the home price elasticity of flood insurance spending is trivially equal to our take-up elasticity 
because all non-SFHA policies face approximately the same premiums. 
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flood damages exceeding equity more likely. Table 4 shows that the decline in flood insurance 

take-up over the housing bust was concentrated among borrowers with high LTVs. 

Expectations of Home Price Growth and Volatility 

A more subtle mechanism that might drive the relationship between flood insurance 

take-up and home prices over the housing boom and bust are beliefs about future home 

prices and home price volatility. Case et al. (2012) show that short-run and long-run home 

price expectations followed the rise and fall of the housing boom and bust. It is possible 

that even high LTV borrowers bought insurance over the boom to avoid defaulting after a 

flood and losing future price gains. Conversely, low LTV borrowers may have dropped their 

coverage in the bust anticipating that they might soon have low or negative equity anyway. 

On the other hand, price expectations will not affect insurance demand absent a risk-shifting 

channel. If a borrower does not intend to default after a flood, then whether or not they have 

flood insurance does not affect their future home price gains. Thus, we see these dynamic 

considerations as consistent with the risk-shifting channel. 

A related point is that beliefs about home price or replacement cost volatility may have 

shifted with the housing boom and bust. Although we are not aware of survey evidence 

showing such changes in buyer beliefs over volatility in this period, housing market actors 

may have anticipated the possibility of a boom-bust cycle or mean reversion in the housing 

market. Higher volatility would dampen the risk-shifting demand effect at the peak of the 

boom if some buyers realized that their increased equity might disappear with the next 

housing cycle. On the other hand, volatility wouldn’t affect flood insurance demand without 

risk-shifting. Following the same argument regarding price expectations, a homeowner’s 

expectations about the spread of future price trajectories should have as little effect on their 

annual insurance choice as the mean of those paths. 

Homeowners may also have believed that replacement costs, and by extension the cost 

of a flood, became more volatile during the housing boom. First, we see little evidence of 

a consistent relationship between the boom-bust cycle and coverage in Figure A6. Second, 

Ferreira and Gyourko (2011) find stable construction costs around housing booms and busts. 

Third, such general beliefs about volatility could not explain the heterogeneous home price 

elasticities we find across homeowner cohorts with different LTVs over the housing bust, 

states with different foreclosure laws, or MSAs with different exposure to default-inducing 

tail risks. Thus, we see little reason why beliefs about volatility should affect insurance 

demand outside of a risk shifting channel. 
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6 Conclusion 

We find a significant and positive relationship between home prices and flood insurance 

take-up over the course of the housing boom and bust of the 2000s. The price variations 

reflect large changes in home equity for existing homeowners but little difference in their 

actual structural value at risk. After ruling out alternative explanations, such as new con-

struction or mandatory purchase requirements imposed by the NFIP, our findings suggest 

that home equity plays a causal role in flood insurance demand. Moreover, the magnitude 

of the effect is comparable to other primary factors, such as premiums and flood events, in 

shifting flood insurance demand. 

Findings from multiple mechanism tests are consistent with the risk shifting channel, 

where leveraged homeowners have less incentive to purchase formal flood insurance because 

mortgage default provides a form of implicit insurance that shifts part of the expected damage 

away. Using loan-level data, we find direct evidence of such risk shifting changing over the 

boom-bust cycle that corresponds closely to the trajectory of flood insurance take-up. We 

also find higher home price elasticities of flood insurance demand in states where default is 

less costly and in states with higher risk of extreme flood events that might induce mortgage 

default. In addition, we find a much stronger response to the subsequent housing market 

bust among the owners of homes built at the peak of the housing boom, the same group with 

the greatest increase in leverage and flood risk shifting during the housing bust. While we 

consider alternative channels through liquidity, wealth, or other general equilibrium effects, 

they ultimately fall short in explaining the patterns and magnitudes of our findings. 

These results have important implications for understanding the likely impact of climate 

change on housing markets. As disaster risk increases over time, more homeowners will face a 

choice between purchasing insurance or risking default after a flood. The significant elasticity 

between changes in home prices and flood insurance take-up, combined with continuing low 

take-up rates in the NFIP, suggests that many leveraged households will choose not to insure. 

This means that some of their losses will ultimately be borne by the broader housing finance 

system or the GSEs that securitize mortgages and the taxpayers that support them. Home 

price declines driven by a bursting “climate bubble” along the coast (Bakkensen and Barrage, 

2017; Bernstein et al., 2019; Keys and Mulder, 2020) could exacerbate these dynamics by 

reducing insurance demand. Our results are also relevant to other disaster insurance markets 

for wildfire and hurricane coverage that are increasingly under stress. 

However, our findings do point to two promising policy interventions. First, expand-

ing the mortgage purchase requirement to high-risk non-SFHA homes may lead owners and 

lenders to better internalize their flood risk. The SFHA mortgage mandate exists in part 
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for this reason, and our findings suggest that underinsurance due to misaligned incentives 

in leveraged markets is prominent outside the SFHA. Second, GSEs could start pricing the 

risk of disaster-induced default into securitization. This would improve lenders’ incentive to 

require borrowers to maintain flood insurance. 
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Figures 

Figure 1: Reduced-Form Relationship Between Boom Size and Take-Up 
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Source: OpenFEMA policy data and Authors’ Analysis 
Notes: Each circle represents an MSA. The x-axis displays the size of the housing boom, and the 
y-axis displays the change in log NFIP policy count between 2002 and 2007 in the left panel and 
2007 and 2012 in the right panel. The boom size measure comes from the structural break estimates 
in Charles et al. (2019). 
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Figure 2: Examples of Housing Booms 
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Source: Structural break estimates from Charles et al. (2019) and Authors’ Analysis 
Notes: This figure shows the quarterly series of the housing price index for four MSAs. The four 
MSAs each represent a group of MSAs classified based on low/high risk and low/high break. In 
each panel, the blue solid line presents the house price series, the black dashed line presents the 
predicted value from the structural break model, and the red vertical line presents the timing of 
the break. The note below each panel displays the average risk score in the MSA and the estimated 
break size. 

36 



Figure 3: Dynamics of the House Price Index and Insurance Take-Up 
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Source: OpenFEMA policy data and Authors’ Analysis 
Notes: This figure plots the estimated coefficients and their 95 percent confidence intervals from 
Equation (1) for HPI (top panel) and total flood insurance policy count (bottom panel). Both 
dependent variables are IHS transformed. The policy count includes all one-to-four family policies. 
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Figure 4: Dynamics of Insurance Take-Up in Two Subsamples 
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Source: OpenFEMA policy data and Authors’ Analysis 
Notes: This figure plots the estimated coefficients and their 95 percent confidence intervals from 
Equation (1) for the count of flood insurance policies written on structures outside the SFHA and 
constructed before 2003 (top panel) and those inside the SFHA (bottom panel). Both dependent 
variables are IHS transformed. 
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Figure 5: LTV and Flood Risk Transfers 

Source: OpenFEMA claims data and Authors’ Analysis 
Notes: This figure plots the relationship between a homeowner’s loan-to-value ratio (LTV) and the 
size of their flood risk transfer, defined as the share of expected flood damages that would exceed 
their equity. Calculation details are given in Appendix Section C.3. 
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Figure 6: Flood Risk Transfers over the Housing Cycle 

Source: CoreLogic, Inc. LLMA data and Authors’ Analysis 
Notes: This figure shows the share of leveraged homeowners with high flood risk transfers in the 
first quarters of 2000, 2007, and 2012 in MSAs with and without large housing booms. High flood 
risk transfers are defined as more than 33% of expected flood losses exceeding equity. 

40 



Figure 7: Heterogeneity by Judicial Review Law 
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Source: OpenFEMA policy data and Authors’ Analysis 
Notes: This figure plots the estimated coefficients from Equation (1) for home prices (left panel) 
and non-SFHA flood insurance take-up (right panel) separately for MSAs in states with judicial 
review foreclosure laws (green line) or without such laws (blue line). Both dependent variables are 
IHS transformed. 

Figure 8: Heterogeneity by Non-SFHA Risk 
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Source: OpenFEMA policy data, First Street Foundation, and Authors’ Analysis 
Notes: This figure plots the estimated coefficients from Equation (1) for home prices (left panel) 
and non-SFHA flood insurance take-up (right panel) separately for MSAs in states with above-
median (green line) and below-median (blue line) non-SFHA risk as measured by Flood Factor 
from the First Street Foundation. Both dependent variables are IHS transformed. 

41 



Figure 9: Flood Risk Transfers over the Housing Bust 

(a) MSAs with Housing Booms 

(b) MSAs without Housing Booms 

Source: CoreLogic, Inc. LLMA data and Authors’ Analysis 
Notes: This figure shows the share of leveraged homeowners with high flood risk transfers in the 
first quarters of 2007 and 2012 in MSAs with (top panel) and without (bottom panel) large housing 
booms as well as whether the purchase loan was originated between 2003 and 2005 (light grey) or 
before 2003 (dark grey). High flood risk transfers are defined as more than 33% of expected flood 
losses exceeding equity. 
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Tables 

Table 1: Summary Statistics 

Statistic Mean St. Dev. 10th Pctile Median 90th Pctile 

All Policies 10, 510.05 31, 664.71 282 1, 774 23, 097 
SFHA Policies 6, 155.51 21, 388.61 136 986 10, 753 
Non-SFHA Policies 4, 354.53 16, 081.73 112 646 9, 796 
Non-SFHA Pre-03 Policies 3, 793.74 14, 015.92 103 585 8, 376 
Avg. Premium1 0.51 0.19 0.28 0.49 0.76 
Non-SFHA Avg. Premium 0.25 0.09 0.17 0.24 0.37 
SFHA Avg. Coverage 129, 031.20 42, 999.41 75, 774.87 122, 894.70 191, 852.10 
Non-SFHA Avg. Coverage 160, 121.40 37, 050.27 107, 363.60 163, 272.20 206, 263.50 
% Contents Coverage 0.33 0.21 0.11 0.27 0.69 
% Standard Deductible 0.73 0.12 0.57 0.74 0.88 
SFHA 1-yr Renewal Rate 0.77 0.20 0.56 0.77 0.94 
Non-SFHA 1-yr Renewal Rate 0.75 0.19 0.56 0.75 0.94 
Total Claims ($1,000s)2 8, 693 221, 178 0 131 4, 045 
Break Size 0.04 0.07 −0.03 0.03 0.14 
FHFA Housing Price Index 169.89 36.73 132.93 162.34 217.67 
Per Capita Income ($1,000s) 36.73 8.64 27.38 35.54 46.77 
Population 834, 636 1, 338, 575 138, 330 372, 086 1, 920, 919 
Population Growth 0.01 0.01 −0.002 0.01 0.02 
Employment Rate3 0.58 0.08 0.48 0.59 0.68 
Home Transaction Volume 12, 542.98 21, 463.26 684 5, 000 32, 536 
Judicial Review Law4 0.52 0.50 0 1 1 
Non-SFHA Tail Risk5 0.64 0.14 0.49 0.65 0.79 

Source: OpenFEMA policy and claims data, Charles et al. (2019), Bureau of Economic Analysis, 
FHFA Home Price Index, First Street Foundation, CoreLogic Deeds data 
Notes: This dataset consists of quarterly observations across 267 MSAs during 2001–2015. 
1 Premium is measured as cost per $100 coverage. 
2 Total claims in the preceding four quarters. 
3 Employment rate is calculated as employed persons divided by total population. 
4 The states with judicial review laws are CT, DE, FL, HI, IL, IN, IA, KS, KY, LA, ME, MD, NJ, 
NM, NY, NC, ND, OH, PA, RI, SC, VT, WI. 
5 Non-SFHA tail risk is measured by the fraction of properties with 1 percent annual risk among all 
non-SFHA properties that are at any risk. 
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Table 2: Home Price Elasticity of Insurance Take-Up 

Dependent variable: log(NFIP Policy Count) 

Policy Sample All SFHA Non-SFHA Non-SFHA + 
Pre-2003 

(1) (2) (3) (4) 

\log(HPI) 0.305∗∗∗ 0.211∗∗∗ 0.483∗∗∗ 0.322∗∗ 

(0.077) (0.060) (0.154) (0.141) 

log(Income) 0.244 0.128 0.026 −0.072 
(0.276) (0.258) (0.404) (0.373) 

log(Sales) 0.002 0.006 0.017∗ 0.016∗ 

(0.006) (0.005) (0.009) (0.009) 

log(Claims) 0.003∗∗∗ 0.0002 0.007∗∗∗ 0.007∗∗∗ 

(0.001) (0.001) (0.001) (0.001) 

Pop. Growth −0.226 −0.160 −0.568 −0.045 
(0.545) (0.551) (0.740) (0.673) 

Emp. Rate −0.517 −0.423 0.041 0.761 
(0.587) (0.551) (0.832) (0.775) 

Risk × Year indicators Yes Yes Yes Yes 
MSA FE Yes Yes Yes Yes 
Quarter FE Yes Yes Yes Yes 
First-stage F-stat 40.20 53.68 37.28 37.28 
Observations 15,180 15,180 15,180 15,180 
Adjusted R2 0.991 0.992 0.979 0.981 

Source: OpenFEMA policy and claims data, Charles et al. (2019), Bureau of Economic 
Analysis, FHFA Home Price Index, First Street Foundation, CoreLogic Deeds data 
Notes: This table presents 2SLS coefficients from Equation (3). Each column indicates a 
different policy sample over which take-up is measured. Respectively, they are all one-to-
four family residential policies, policies inside the SFHA, policies outside the SFHA, and 
policies on structures built prior to 2003 outside the SFHA. The first-stage regression 
follows Equation (2), and the corresponding F-statistic is reported in the bottom panel. 
“Risk × Year indicators” refers to a set of interaction terms between the average risk 
score in the MSA and indicators for each year. Standard errors (in parentheses) are 
clustered by MSA. ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01 
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Table 3: Heterogeneity by Foreclosure Law and Non-SFHA Risk 

Dependent variable: log(NFIP Policy Count) 

Policy Sample Non-SFHA SFHA 

(1) (2) (3) (4) 

\log(HPI) 0.298∗ 0.453∗∗ 0.194∗∗∗ 0.240∗∗∗ 

(0.168) (0.179) (0.074) (0.072) 

\log(HPI) × Judicial 0.373∗∗∗ −0.053 
(0.119) (0.066) 

log(HPI)\× High Risk 0.326∗∗ 0.092 
(0.152) (0.076) 

log(Income) 0.039 −0.050 0.162 0.073 
(0.419) (0.436) (0.261) (0.263) 

log(Sales) 0.014 0.018∗∗ 0.006 0.006 
(0.009) (0.009) (0.005) (0.006) 

log(Claims) 0.007∗∗∗ 0.007∗∗∗ 0.0003 0.0002 
(0.001) (0.001) (0.001) (0.001) 

Pop. Growth −0.606 −0.777 −0.089 −0.130 
(0.739) (0.760) (0.544) (0.549) 

Emp. Rate −0.163 −0.007 −0.380 −0.489 
(0.813) (0.807) (0.548) (0.544) 

Risk × Year indicators Yes Yes Yes Yes 
MSA FE Yes Yes Yes Yes 
Quarter FE Yes Yes Yes Yes 
First-stage F-stat (25.89, 80.95) (23.74, 71.36) (29.11, 81.52) (28.05, 70.35) 
Observations 15,180 15,180 15,180 15,180 
Adjusted R2 0.979 0.979 0.992 0.992 

Source: OpenFEMA policy and claims data, Charles et al. (2019), Bureau of Economic 
Analysis, FHFA Home Price Index, First Street Foundation, CoreLogic Deeds data 
Notes: This table presents 2SLS coefficients from Equation (E1) testing for heterogeneous 
home price elasticities by states with judicial review foreclosure laws in columns (1) and 
(3), and above median non-SFHA flood risk in column (2). The dependent variable is the 
IHS-transformed count of non-SFHA policies in columns (1) and (2), and its counterpart 
for SFHA policies in columns (3) and (4). The first-stage regressions follow Equation 
(E2), and the corresponding F-statistics are reported in the lower panel. “Risk × Year 
indicators” refers to a set of interaction terms between the average risk score in the MSA 
and indicators for each year. Standard errors (in parentheses) are clustered by MSA. ∗ p 
< 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01 
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Table 4: Risk Shifting over the Bust: Changes by Home Purchase Timing 

Dependent variable: 
ΔShare Low Equity ΔPolicy Count 

\Δlog(HPI) 

(1) 

-0.555∗∗∗ 

(0.065) 

(2) 

0.008 
(0.057) 

(3) 

0.377∗∗∗ 

(0.120) 

(4) 

0.333∗∗∗ 

(0.118) 

\Δlog(HPI) × ’03–’05 Cohort -0.921∗∗∗ 

(0.064) 
1.035∗∗∗ 

(0.272) 

First-stage F-stat 
Observations 
Adjusted R2 

91.42 
239 
0.795 

91.42 
464 
0.800 

10.18 
252 
0.168 

94.43 
504 
0.192 

Source: OpenFEMA policy and claims data, Charles et al. (2019), Bureau of 
Economic Analysis, FHFA Home Price Index, First Street Foundation, Core-
Logic Deeds data 
Notes: This table presents coefficients from first-difference specifications as 
described in Appendix F. Column (1) presents estimates of the change in the 
share of low equity borrowers as a function of instrumented changes in home 
prices between 2007 Q1 and 2012 Q1. Column (2) separately measures the 
low equity share for loans originated between 2003-2005 and those before 2003 
with an indicator and home price interaction term for the 2003-2005 cohort. 
Columns (3) and (4) present estimates on the change in NFIP policy count 
from the same specifications as (1) and (2), respectively. In the latter two 
regressions, the cohort indicator represents whether the building was built 
during 2003-2005. All regressions control for first-differenced log income, log 
sales, population growth and employment rate, foreclosures, the average risk 
score, and the interaction of each of the above with the 2003-2005 cohort 

∗indicator. p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01 
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A Additional Tables and Figures 

Table A1: MSA Characteristics by Structural Break Size (2001 Q1) 

Group Lowest Boom Middle Boom Highest Boom 
(N = 88) (N = 91) (N = 88) 

Structural Break Size 
Mean (SD) -0.024 (0.015) 0.032 (0.018) 0.13 (0.047) 
Median [Min, Max] -0.021 [-0.102, -0.007] 0.034 [-0.007, 0.065] 0.117 [0.065, 0.271] 

SFHA Policy Count 
Mean (SD) 1,870 (4,490) 2,390 (5,200) 13,500 (34,400) 
Median [Min, Max] 528 [32.0, 35,500] 791 [5.94, 42,300] 2,220 [27.2, 22,5000] 

Non-SFHA Policy Count 
Mean (SD) 2,210 (11,300) 1,260 (2,110) 5,140 (10,800) 
Median [Min, Max] 220 [18.8, 103,000] 430 [32.7, 12,100] 1240 [76.8, 79,000] 

Average SFHA Building Coverage (in $1,000s) 
Mean (SD) 74.3 (20.8) 82.4 (24.6) 108 (29.5) 
Median [Min, Max] 70.6 [28.5, 145] 76.1 [41.4, 158] 108 [48.3, 173] 

Average Non-SFHA Building Coverage (in $1,000s) 
Mean (SD) 101 (26.4) 110 (26.3) 130 (28.7) 
Median [Min, Max] 97.9 [36.4, 171] 107 [62.3, 185] 130 [67.0, 195] 

Average Risk Score, All Properties 
Mean (SD) 1.65 (0.532) 1.76 (0.584) 2.16 (0.874) 
Median [Min, Max] 1.50 [1.23, 5.50] 1.63 [1.21, 5.79] 1.86 [1.25, 6.74] 

Average Risk Score, SFHA Properties 
Mean (SD) 4.61 (1.15) 4.81 (1.17) 4.70 (1.56) 
Median [Min, Max] 4.59 [2.42, 8.33] 4.68 [2.39, 7.63] 4.65 [1.52, 8.82] 

Average Risk Score, Non-SFHA Properties 
Mean (SD) 1.51 (0.370) 1.61 (0.549) 1.89 (0.651) 
Median [Min, Max] 1.38 [1.20, 3.79] 1.46 [1.16, 5.95] 1.68 [1.22, 5.08] 

Population (in 1,000s) 
Mean (SD) 743 (1,100) 734 (1,410) 855 (1,290) 
Median [Min, Max] 289 [101, 6,120] 348 [104, 9,380] 386 [125, 9,630] 

Source: OpenFEMA policy and claims data, Charles et al. (2019), Bureau of Economic Analysis, 
FHFA Home Price Index, First Street Foundation, CoreLogic Deeds data 
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Table A2: Home Price Elasticity of Take-Up in Different Specifications 

Dependent variable: log(NFIP policy count) 

\log(HPI) 

(1) 

0.390∗∗∗ 

(0.059) 

(2) 

0.352∗∗∗ 

(0.070) 

(3) 

0.308∗∗∗ 

(0.072) 

(4) 

0.305∗∗∗ 

(0.077) 

log(Income) 0.228 
(0.277) 

0.250 
(0.275) 

0.244 
(0.276) 

log(Sales) 0.003 
(0.006) 

0.002 
(0.006) 

0.002 
(0.006) 

log(Claims) 0.004∗∗∗ 

(0.001) 
0.003∗∗∗ 

(0.001) 
0.003∗∗∗ 

(0.001) 

Pop. Growth −0.364 
(0.522) 

−0.248 
(0.531) 

−0.226 
(0.545) 

Emp. Rate −0.789 
(0.597) 

−0.514 
(0.581) 

−0.517 
(0.587) 

Other covariates 
Risk × Quad. time trend 
Risk × Year indicators 
MSA FE 
Quarter FE 
First-stage F-stat 
Observations 
Adjusted R2 

Yes 
Yes 
99.78 
15,420 
0.990 

Yes 

Yes 
Yes 
49.28 
15,240 
0.990 

Yes 
Yes 

Yes 
Yes 
44.31 
15,180 
0.991 

Yes 

Yes 
Yes 
Yes 
40.20 
15,180 
0.991 

Source: OpenFEMA policy and claims data, Charles et al. (2019), Bureau of 
Economic Analysis, FHFA Home Price Index, First Street Foundation, Core-
Logic Deeds data 
Notes: This table presents 2SLS coefficients from Equation (3). The depen-
dent variable is IHS-transformed total policy count. The first-stage regression 
follows Equation (2), and the corresponding F-statistic is reported in the bot-
tom panel. Each column represents a different set of controls as indicated by 
the bottom panel. “Other covariates” include IHS-transformed income, home 
sales volume, and total NFIP claim amount, as well as population growth and 
employment rate. “Risk × Quadratic trend” is the interaction between the 
average risk score for all properties in the MSA and a quadratic time trend. 
“Risk × Year indicators” are a set of interaction terms between the average 
risk score and indicators for each year. Column (4) is the preferred specifica-
tion used in all main results. Standard errors (in parentheses) are clustered 
by MSA. ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01 
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Table A3: Instrumented Regressions—Newly Enrolled Policy Count 

Dependent variable: log(NFIP Policy Count) 

All SFHA Non-SFHA 

\log(HPI) 

(1) 

0.297∗∗∗ 

(0.078) 

(2) 

0.190∗∗∗ 

(0.060) 

(3) 

0.486∗∗∗ 

(0.152) 

log(Income) 0.303 
(0.271) 

0.203 
(0.268) 

0.045 
(0.393) 

log(Sales) 0.002 
(0.006) 

0.006 
(0.006) 

0.018∗∗ 

(0.008) 

log(Claims) 0.003∗∗∗ 

(0.001) 
0.0002 
(0.001) 

0.008∗∗∗ 

(0.001) 

Pop. Growth −0.009 
(0.551) 

0.001 
(0.584) 

−0.290 
(0.738) 

Emp. Rate −0.577 
(0.586) 

−0.445 
(0.580) 

−0.069 
(0.816) 

Risk × Year indicators 
MSA × Quarter-of-year FE 
Quarter FE 
First-stage F-stat 
Observations 
Adjusted R2 

Yes 
Yes 
Yes 
37.67 
15,112 
0.988 

Yes 
Yes 
Yes 
51.33 
15,112 
0.989 

Yes 
Yes 
Yes 
34.86 
15,112 
0.973 

Source: OpenFEMA policy and claims data, Charles et al. (2019), Bureau of Eco-
nomic Analysis, FHFA Home Price Index, First Street Foundation, CoreLogic Deeds 
data 
Notes: This table presents 2SLS coefficients from Equation (3). The dependent 
variables are the IHS-transformed counts of newly enrolled policies in categories 
indicated in the top panel. The first-stage regressions follow Equation (2), and the 
corresponding F-statistics are reported in the bottom panel. Standard errors (in 
parentheses) are clustered by MSA. ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01 
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Table A4: Robustness Checks on the Home Price Elasticity of Take-Up 

Dependent variable: log(NFIP Policy Count) 

Checks Cohort-Based IV Boom Measurement 

\log(HPI) 

(1) 

0.258∗∗∗ 

(0.067) 

(2) 

0.278∗∗∗ 

(0.070) 

(3) 

0.341∗∗∗ 

(0.069) 

(4) 

0.360∗∗∗ 

(0.068) 

log(Income) 0.287 
(0.268) 

0.269 
(0.272) 

0.212 
(0.271) 

0.195 
(0.269) 

log(Sales) 0.002 
(0.006) 

0.002 
(0.006) 

0.003 
(0.006) 

0.003 
(0.006) 

log(Claims) 0.003∗∗∗ 

(0.001) 
0.003∗∗∗ 

(0.001) 
0.003∗∗∗ 

(0.001) 
0.003∗∗∗ 

(0.001) 

Pop. Growth −0.206 
(0.539) 

−0.215 
(0.539) 

−0.242 
(0.541) 

−0.250 
(0.539) 

Emp. Rate −0.456 
(0.579) 

−0.482 
(0.580) 

−0.562 
(0.586) 

−0.586 
(0.586) 

Risk × Year indicators 
MSA FE 
Quarter FE 
First-stage F-stat 
Observations 
Adjusted R2 

Yes 
Yes 
Yes 

1531.24 
15,180 
0.991 

Yes 
Yes 
Yes 
120.93 
15,180 
0.991 

Yes 
Yes 
Yes 
39.41 
15,180 
0.991 

Yes 
Yes 
Yes 
42.14 
15,180 
0.991 

Source: OpenFEMA policy and claims data, Charles et al. (2019), Bureau of Eco-
nomic Analysis, FHFA Home Price Index, First Street Foundation, CoreLogic Deeds 
data 
Notes: This table presents 2SLS coefficients from Equation (3). The dependent 
variable is IHS-transformed total policy count. The first-stage regressions follow 
Equation (2), and the corresponding F-statistics are reported in the bottom panel. 
Columns (1) and (2) use instruments based on start-of-boom cohorts. In column 
(1), the first-stage regression uses, as instruments, the interaction between the origi-
nal instruments with indicators for the start-of-boom quarter. Column (2) switches 
to the start-of-boom year. Columns (3) and (4) examine potential mismeasurement 
of boom size and timing for those MSAs with no clear boom. Column (3) sets 
the structural break of all MSAs with negative boom sizes to zero. Column (4) 
expands sets the lowest quartile of MSA structural breaks to zero. Standard errors 
(in parentheses) are clustered by MSA. ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01 
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Table A5: Instrumented Regressions—Stacked Design 

Dependent variable: log(NFIP Policy Count) 

All SFHA Non-SFHA 

\log(HPI) 

(1) 

0.294∗∗∗ 

(0.078) 

(2) 

0.188∗∗∗ 

(0.060) 

(3) 

0.484∗∗∗ 

(0.152) 

log(Income) 0.307 
(0.269) 

0.206 
(0.266) 

0.055 
(0.391) 

log(Sales) 0.002 
(0.006) 

0.006 
(0.006) 

0.017∗∗ 

(0.008) 

log(Claims) 0.003∗∗∗ 

(0.001) 
0.0002 
(0.001) 

0.007∗∗∗ 

(0.001) 

Pop. Growth −0.002 
(0.539) 

0.005 
(0.572) 

−0.270 
(0.723) 

Emp. Rate −0.581 
(0.583) 

−0.444 
(0.577) 

−0.086 
(0.814) 

Risk × Year indicators 
MSA-cohort FE 
Quarter-cohort FE 
First-stage F-stat 
Observations 
Adjusted R2 

Yes 
Yes 
Yes 
39.19 
15,180 
0.988 

Yes 
Yes 
Yes 
54.53 
15,180 
0.989 

Yes 
Yes 
Yes 
35.74 
15,180 
0.973 

Source: OpenFEMA policy and claims data, Charles et al. (2019), Bureau of 
Economic Analysis, FHFA Home Price Index, First Street Foundation, Core-
Logic Deeds data 
Notes: This table presents 2SLS coefficients from the stacked design as de-
scribed in Appendix D. The dependent variables are IHS-transformed policy 
counts in categories indicated in the top panel. The corresponding F-statistic 
in the first-stage regression is reported in the bottom panel. Standard errors 
(in parentheses) are clustered by MSA. ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01 
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Table A6: Boom vs. Bust: First-Difference Estimates 

Dependent variable: Δlog(NFIP Policy Count) 

Boom (2002–2007) Bust (2007–2012) 

SFHA Non-SFHA SFHA Non-SFHA 

(1) (2) (3) (4) 

\Δlog(HPI) 0.315∗∗∗ 0.353∗∗ 0.056 0.670∗∗∗ 

(0.068) (0.178) (0.131) (0.234) 

\Δlog(HPI) × ’03–’05 Cohort 0.298 0.777∗∗∗ 

(0.234) (0.270) 

First-stage F-stat 35.52 33.35 108.11 91.23 
Observations 251 251 504 504 
Adjusted R2 0.004 0.034 0.048 0.137 

Source: OpenFEMA policy and claims data, Charles et al. (2019), Bureau of 
Economic Analysis, FHFA Home Price Index, First Street Foundation, CoreLogic 
Deeds data 
Notes: This table presents coefficients from first-difference specifications as de-
scribed in Appendix F. Columns (1)-(2) present boom-period estimates based on 
the difference between 2002 Q1 and 2007 Q1, while columns (3)-(4) present bust-
period estimates based on the difference between 2007 Q1 and 2012 Q1. Columns 
(1) and (3) feature SFHA policies and columns (2) and (4) feature non-SFHA 
policies. In columns (3) and (4), we further interact the (first-differenced) hous-
ing price index with an indicator of whether the building was constructed near 
the peak of the boom (2003-05), to estimate differential effects on this “boom co-
hort”. All regressions control for first-differenced log income, log sales, population 
growth and employment rate, as well as the average risk score. Columns (3)-(4) 

∗also control for the first-differenced share of foreclosures among home sales. p < 
0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01 
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Figure A1: Size and Timing of the Structural Breaks 
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Source: Structural break estimates from Charles et al. (2019) and Authors’ 
Analysis 
Notes: Each circle represents an MSA. The x-axis displays the quarter of the 
structural break, and the y-axis displays the size of the break. The size of the 
circle reflects population size in 2000. 
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Figure A2: Housing Boom Size Across MSAs 
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Source: Structural break estimates from Charles et al. (2019) and Authors’ Analysis 
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Figure A3: Pre-Boom Trends in NFIP Take-Up by Structural Break Tercile 

7

8

9

10

11

2001-1 2001-3 2002-1 2002-3 2003-1 2003-3

Quarter

Break Size

Small

Medium

Large

A. Log total policy count

7

8

9

10

11

2001-1 2001-3 2002-1 2002-3 2003-1 2003-3

Quarter

B. Log SFHA policy count

7

8

9

10

11

2001-1 2001-3 2002-1 2002-3 2003-1 2003-3

Quarter

C. Log non-SFHA policy count

Source: OpenFEMA policy data, Charles et al. (2019) 
Notes: This figure shows the quarterly time series of NFIP policy in force during 
2001–2003 in the raw data. Each color represents one group of MSAs in each 
structural break tercile. Panel A plots the IHS-transformed total policy count, 
and Panels B and C plot the IHS-transformed count of SFHA and non-SFHA 
policies, respectively. 

55 



Figure A4: Dynamics of NFIP Premium 
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Source: OpenFEMA policy and claims data, Charles et al. (2019), Bureau of Economic Analysis, 
FHFA House Price Index, First Street Foundation, CoreLogic, Inc. Deeds data, and Authors’ 
Analysis 
Notes: This figure plots the estimated coefficients and their 95 percent confidence intervals from 
Equation (1) for premium, measured as cost per $100 coverage, of all policies (left panel) and 
non-SFHA policies (right panel). Both dependent variables are IHS transformed. 
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Figure A5: Dynamics of Take-Up Under Different Specifications 
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Source: OpenFEMA policy and claims data, Charles et al. (2019), Bureau of 
Economic Analysis, FHFA House Price Index, First Street Foundation, CoreL-
ogic, Inc. Deeds data, and Authors’ Analysis 
Notes: This figure plots the point estimates for overall take-up from Equa-
tion (1) with different sets of controls. Specification 1 includes only MSA and 
quarter-year fixed effects. Specification 2 adds controls for income and home 
sales volume. Specification 3 further adds the average risk score interacted with 
a quadratic time trend. This risk control is replaced with a set of interaction 
terms between the average risk score and indicators for each year in specification 
4, which is also the preferred specification used in all main results. 
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Figure A6: Dynamics of Building Coverage 
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Source: OpenFEMA policy and claims data, Charles et al. (2019), Bureau of Economic Analysis, 
FHFA House Price Index, First Street Foundation, CoreLogic, Inc. Deeds data, and Authors’ 
Analysis 
Notes: This figure plots the estimated coefficients and their 95 percent confidence intervals from 
Equation (1) for coverage purchased on flood insurance policies inside SFHAs (left panel) and 
outside SFHAs (right panel). Both dependent variables are IHS transformed. 

Figure A7: Dynamics of Newly Enrolled Policies 
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Source: OpenFEMA policy and claims data, Charles et al. (2019), Bureau of Economic Analysis, 
FHFA House Price Index, First Street Foundation, CoreLogic, Inc. Deeds data, and Authors’ 
Analysis 
Notes: This figure plots the estimated coefficients and their 95 percent confidence intervals from 
Equation (1) for the number of newly enrolled policies inside SFHAs (left panel) and outside SFHAs 
(right panel). 
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Figure A8: Dynamics of Contents Coverage 
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Source: OpenFEMA policy and claims data, Charles et al. (2019), Bureau of 
Economic Analysis, FHFA House Price Index, First Street Foundation, CoreL-
ogic, Inc. Deeds data, and Authors’ Analysis 
Notes: This figure plots the estimated coefficients and their 95 percent confi-
dence intervals from Equation (1) for the share of newly enrolled SFHA policies 
that include contents coverage. 
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Figure A9: Dynamics of Deductible Choice 
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Source: OpenFEMA policy and claims data, Charles et al. (2019), Bureau of 
Economic Analysis, FHFA House Price Index, First Street Foundation, CoreL-
ogic, Inc. Deeds data, and Authors’ Analysis 
Notes: This figure plots the estimated coefficients and their 95 percent confi-
dence intervals from Equation (1) for the share of newly enrolled SFHA policies 
with the standard deductible. 
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Figure A10: Home Prices and Homeowner Equity 

Source: Federal Reserve Board of Governors Quarterly Financial Accounts and S&P 
Case-Shiller US National House Price Index (Retrieved from FRED) 
Notes: This figure plots the household equity (home value minus mortgage debt) and 
home prices over the sample period. 
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Figure A11: Distributions of Flood Risk Shifting 

(a) 2000 (b) 2007 

(c) 2012 

Source: CoreLogic, Inc. LLMA data, OpenFEMA claims data, and Authors’ Analysis 
Notes: Panels show the cumulative distribution function of flood risk shifting by leveraged home-
owners between MSAs with and without housing booms in the first quarters of 2000 (top), 2007 
(middle), and 2012 (bottom). 
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Figure A12: One-Year Renewal Rate 
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Source: OpenFEMA policy and claims data, Charles et al. (2019), Bureau of Economic Analysis, 
FHFA House Price Index, First Street Foundation, CoreLogic, Inc. Deeds data, and Authors’ 
Analysis 
Notes: This figure plots the estimate coefficients and their 95 percent confidence intervals from 
Equation (1) for one-year renewal rates of policies inside the SFHA (left panel) and outside the 
SFHA (right panel). 
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B Framework 

We present a theoretical framework to illustrate the role of home equity in disaster insur-
ance demand. We start by describing a baseline model with no relationship between home 
equity and willingness to pay for insurance. In this simplified model, because disasters dam-
age a building’s structure, the other components of home equity—land value and mortgage 
debt—have no direct effect on demand. 
We extend the model to allow homeowners to default on their mortgage debt rather 

than pay the repair costs from a disaster. Mortgage default provides implicit insurance to 
leveraged homeowners and creates a positive relationship between their home equity and 
flood insurance demand. 

B.1 Baseline Model 

Consider a single-period model with an agent endowed with a property H. The equity 
value of H is given by EH ≡ LH + RH − MH , where LH is the land value, RH is the structure 
value, and MH is the outstanding mortgage debt. We assume the agent starts with positive 
home equity, or LH + RH ≥ MH . 
The model proceeds in three phases: “pre-disaster,” “disaster,” and “post-disaster.” Pre-

disaster, the agent receives income W and chooses whether to insure their structure against 
disaster risk. We consider a single insurance contract covering the full value of RH with no 
deductible or copay. Denote the purchase decision by I = 0, 1 and the price of the insurance 
PI . 35 

In the disaster phase, a disaster occurs with probability p and causes damages to the 
structure. The potential repair cost L is distributed as follows: � 

L = r ∼ f(r), r ∈ (0, RH ] with probability p, 
L = 0 with probability 1 − p 

If uninsured, the agent must pay the full cost of L. If insured, L is paid by the insurer. 
In the post-disaster period, the agent derives linear utility from wealth and home equity:36 

EH + W − I · PI − (1 − I) · L. 

The agent maximizes their expected utility. Assuming PI ≤ W , the agent will purchase 
the insurance if and only if expected utility without insurance is lower than utility with 
insurance: � � 

E EH + W − L ≤ EH + W − PI . (B1) 

Clearly, the agent’s willingness to pay for insurance, denoted Pb, equals their expected repair 

35In practice, the NFIP caps structure coverage at $250,000. Adding this to the model would not change 
any of our directional predictions about how home equity affects disaster insurance demand. 

36We follow much of the insurance literature in defining a utility function over wealth to motivate insurance 
demand, as in Einav et al. (2010). We abstract away from non-housing assets or risk aversion over home 
equity because the central point of the model—the directional relationship between home equity and demand 
for disaster insurance—holds for any weakly concave utility function over wealth. 
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costs: bP = E(L). (B2) 

The agent’s valuation of disaster insurance is not affected by their home equity because the 
agent fully internalizes the risk to their structure, which is independent of land value and 
mortgage debt. 

B.2 Insurance willingness to pay with Mortgage Default 

We extend the baseline model to allow the agent to default on their mortgage debt after 
a disaster. When an uninsured agent defaults, they do not pay repair costs L but forfeit 
their equity EH and pay a default cost Mc. 
Uninsured agents default when L ≥ Mc + EH . Thus, expected utility without insurance 

is h i 
E EH + W − min(L, Mc + EH ) . 

Setting this expression equal to the agent’s utility with insurance, which is unaffected by the 
default option, we derive the agent’s willingness to pay for insurance with default: 

implicit insurance effect z }| {h i Z RH � � 
Pb = E min(L, Mc + EH ) = E(L) − p · r − (Mc + EH ) · f(r)dr (B3) cM +EH 

The key difference between Equation (B3) and Equation (B2) is the “implicit insurance 
effect” of default that is subtracted from expected repair costs. The willingness to pay 
specified in (B3) is strictly less than that in (B2) when the probability of disaster-induced 
default is nonzero. 
Further, we can derive how Pb changes with respect to EH : � �dPb 

= p · 1 − F (Mc + EH ) > 0. (B4)
dEH 

where F (·) is the cdf of the disaster damages function. This expression shows that the 
marginal effect of equity on the agent’s value of insurance is given by the likelihood of 
getting a damage level that is high enough for the homeowner to default. Intuitively, the 
default option provides the agent with a form of informal insurance with a deductible equal 
to the agent’s equity plus default costs. As home equity increases, the loss from defaulting 
grows, and the value of this implicit insurance becomes less compared to that of formal 
insurance. 
Equation (B4) identifies two factors that should influence the strength of the relationship 

between home equity and flood insurance demand. Expression (B4) is larger when (i) the 
default cost Mc is lower and (ii) default-inducing damage levels are more likely. These 
observations motivate two empirical tests to assess whether the implicit insurance from 
default plausibly explains the relationship between home prices and flood insurance take-up 
in the data: 

Risk Shifting Prediction (1). MSAs with higher default costs should have an attenuated 
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relationship between the house prices and flood insurance take-up relative to MSAs with lower 
default costs. 

Risk Shifting Prediction (2). MSAs with greater exposure to tail risk should see greater 
increases (decreases) in take-up in response to increases (decreases) in house prices relative 
to MSAs with lower tail risk. 
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C Additional Variables 

C.1 Flood Risk 

The First Street Foundation Flood Model (FSF-FM) combines hydrological models, fine-
resolution land cover and elevation data, and inventories of flood adaptation infrastructure to 
accurately estimate expected flood depths across the entire continental United States (First 
Street Foundation, 2020). Covering 142 million properties, it provides the most comprehen-
sive national account of flood risk to date. 
The flood risk measure from FSF-FM has two main differences from FEMA’s flood map. 

First, the majority of FEMA’s maps are outdated and do not reflect recent changes in risk 
levels; 75 percent of them are more than five years old, despite the National Flood Insurance 
Reform Act of 1994 requirement to update the maps every five years. Second, FSF-FM 
accounts for potential pluvial or surface water flooding unlike FEMA’s maps. As a result, 
FSF-FM finds a higher flood risk than FEMA for most locations: FSF-FM shows that 14.6 
million homes are currently subject to a 1 percent annual flood risk, but FEMA’s maps 
indicate this level of risk for only 8.7 million properties.37 

The First Street Foundation also provides a “Flood Factor” risk score measure (1–10, 
representing minimal to extreme levels of risk) based on each property’s flood probability and 
depth profile.38 For each MSA, we calculate the average risk score of all properties, SFHA 
properties, and non-SFHA properties. In the regressions, we use the floodplain-specific risk 
measure39 interacted with quarter indicators to control for time-varying effects of the average 
risk level. 
We construct an additional measure to characterize non-SFHA tail risk to test the risk 

shifting channel. One hypothesis under this mechanism is that MSAs with more properties 
exposed to tail risk will have a larger response to the increase in home equity. As we focus 
on non-SFHA take-up, we define the following measure of non-SFHA tail risk exposure: 

Number of non-SFHA properties at 1 percent annual flood risk 
Non-SFHA tail risk = . 

Number of non-SFHA properties at any risk 

The denominator and numerator capture the extent of the flood insurance market outside 
the SFHA and the subset of these properties facing severe enough risk that a flood could 
induce enough damage to cause a mortgage default, respectively.40 This ratio ranges from 1 
to 89 percent across MSAs, with the median at 65 percent. 

37See https://firststreet.org/flood-lab/published-research/2020-national-flood-risk-assessment-highlights/ 
for more details. 

38See https://floodfactor.com/methodology for the Flood Factor methodology. 
39For example, we use the average risk score for non-SFHA properties when the outcome variable is 

non-SFHA take-up. 
40We use the 1 percent annual risk cutoff to proxy for tail risk because properties with at least 1 percent 

annual risk of shallow flood depth also have a substantial chance of suffering from overwhelming levels of 
damage. 
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C.2 Foreclosure Law 

The states with judicial review laws are CT, DE, FL, HI, IL, IN, IA, KS, KY, LA, ME, 
MD, NJ, NM, NY, NC, ND, OH, PA, RI, SC, VT, and WI. These states require court 
approval for foreclosure sales after mortgage defaults, as opposed to states where lenders 
may initiate foreclosure outside of the court based on the contract terms of the mortgage. 
The main cost of mortgage default to the owner of a heavily damaged or destroyed home 

with negative equity will be the risk of a foreclosure that negatively effects their long-term 
credit. Judicial review laws make the process of obtaining a foreclosure sale more costly 
for lenders because they require lenders to obtain permission through court proceedings. 
Mian et al. (2015) found that delinquent homeowners were more than twice as likely to 
enter foreclosure in states with judicial foreclosure laws as in those that allow nonjudicial 
foreclosures, and Demiroglu et al. (2014) found that borrowers with negative equity are more 
likely to enter default in judicial foreclosure states. This evidence suggests that flooded 
homeowners entering default are more likely to reach a settlement with their lender that 
preserves their credit with the protection of judicial foreclosure. 
Other commonly cited borrower protection are state-level non-recourse laws, which pre-

vent lenders from pursuing deficiency judgements in court to recover unpaid mortgage bal-
ances after default. We argue that non-recourse laws are unlikely to decrease default costs 
for disaster-affected homeowners. First, deficiency judgements are notoriously difficult to 
pursue and can be discharged in bankruptcy (Brueggeman and Fisher, 2011; Guiso et al., 
2013). Second, the main effect of recourse laws documented by Ghent and Kudlyak (2011) 
- increasing the use of deeds in lieu of foreclosure - is unlikely to be perceived as a cost by 
mortgagors in our setting. Lenders prefer deeds in lieu of foreclosure because they transfer 
ownership of the distressed property without going through foreclosure. Although borrowers 
normally rely on the lengthy foreclosure process to remain in their homes longer, this would 
not be a concern if the home were uninhabitable due to flood damage. Furthermore, the 
deed in lieu of foreclosure has less negative credit impact, likely making it the preferred 
mechanism of both parties in our setting. 

C.3 Calculating Loan-Level Flood Risk Transferred 

We define “flood risk transferred” as the share of expected flood damages that exceed a 
leveraged homeowner’s equity. To calculate this measure, we first estimate the borrower’s 
current equity as a share of their home’s structure value for each loan in the CoreLogic 
LLMA data. Following a similar procedure as in Indarte (2023) whereby we track the loan’s 
current balance in the LLMA data and inflate the property’s value by the change in home 
prices, we use the following equation to estimate the current equity of a loan i in CBSA m 
originated in quarter t at quarter k > t: 

Pit ∗ HPImk − BikHPImtEQUIT Yik = ,
0.66 ∗ Pit 

where Bik is the current loan balance, Pit the original purchase price observed in the LLMA 
data, and the HPI variables are the FHFA CBSA-level home price index values at t and k. 
The 0.66 multiplying the purchase period home price converts the measure from equity as a 
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share of total property value to equity as a share of structure value, assuming that land cost 
made up 34% of the purchase price.41 

Next, as our proxy for expected flood losses, we use flood insurance claims for building 
damage among single-family homes from 2001 to 2018 in the OpenFEMA data. Denote 
claims as a share of insured value by 0 < l ≤ 1 distributed f(l). We calculate flood risk 
shifted for a loan i in period k as: Z EQUIT Yik 

Z 1 

Rik = l ∗ f(l) dl + EQUIT Yik ∗ f(l) dl 
0 EQUIT Yik 

Rik is expected flood losses falling to the owner if they default whenever damages exceed 
their equity.42 

Rik is a noisy proxy for risk-shifting for several reasons: Flood insurance claims do not 
exactly equal flood damages especially for underinsured homes, we do not observe hetero-
geneity in flood risk by loan, and the home price indices imperfectly measure changes in 
property-level prices. This measurement error is an additional motivation, alongside unob-
served confounds, for using sudden changes in land value from the housing boom and bust 
as instrumental variables. 
We believe our measure of flood risk shifting provides two key insights in our analysis, as 

discussed in section 5.3. First, it shows that the magnitude of changes in home equity were 
large relative to the magnitude of flood insurance claims, plausibly affecting flood insurance 
decisions. Second, it confirms that homes bought near the peak of the housing boom had 
much larger changes in their flood risk shifted during the bust than those bought earlier, 
motivating our heterogeneity test of the risk shifting mechanism. 

D Stacked Event-by-Event Estimation 

Our implementation of the stacked estimator is adapted from Cengiz et al. (2019). The 
goal of the estimator is to avoid the biases that can be introduced by two-way fixed effects 
(TWFE) estimation in settings with heterogeneous treatment effects and variation in treat-
ment timing across units.43 Because different MSAs experienced their housing booms at 
different times, our estimation results from Equations (1) and (3) could be affected by these 
biases. 
The stacked estimator addresses the TWFE estimator’s issues by estimating a separate 

difference-in-differences regression for each group of MSAs with large housing booms in a 
specific year. For each group, the only comparison group is the set of MSAs with small or 
negative estimated structural breaks—those with no housing boom. Thus, each regression 
used to estimate the pooled treatment effect avoids using treated MSAs with different timing 

41A 34% land share is the 2000Q1 value in the aggregate land and structure data value 
data described in Davis and Heathcote (2007) and available at https://www.aei.org/ 
historical-land-price-indicators/. We find similar changes in flood risk shifted over time and 
across cohorts using different land shares. 

42For EQUIT Y ≤ 0, owners shift all of their flood risk (R = 0). For EQUIT Y ≥ 1, owners shift none of 
their risk (R = 1). 

43See the main text for further citations on this literature. 
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Figure D1: Comparison of main and stacked estimates 
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Notes: This figure plots our main estimates for overall take-up in green and 
those from the stacked estimator in blue. They follow Equations (1) and (D1), 
respectively. 
Source: OpenFEMA policy and claims data, Charles et al. (2019), Bureau of 
Economic Analysis, FHFA House Price Index, First Street Foundation, CoreL-
ogic, Inc. Deeds data, and Authors’ Analysis 

as comparison groups. 
We first define “never-treated” MSAs as those with a negative boom or a boom size 

in the lowest quartile of positive booms. As discussed in Section 4.2, these values likely 
represent noise in the estimation rather than actual booms. Our results are similar under 
other reasonable cutoffs. 
Next, we create year-by-year datasets as follows: For each year from 2001 to 2005, we 

select all MSAs with home price structural breaks in that year and put them together with 
the no-boom MSAs, which we consider to be a “cohort”. We then stack the five cohorts to 
form the regression dataset. We estimate the following equation: 

24X 
lnNF IPmtg = βτ (P ostτ × ΔPm) + δ0Xmt + λmg + λtg + εmtg, (D1)mt 

τ =−9 

where g denotes the cohort and other notations are the same as before. The only difference 
between this specification and Equation (1) is that the MSA and time fixed effects are 
now cohort specific. The stacking design and within-cohort comparison prevent using early-
treated MSAs as controls and thus avoid the TWFE problems in the staggered design. 
In Figure D1, we plot our main estimates and the estimates from the stacked design 
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together. The two trajectories are almost indistinguishable, especially in the one year before 
and three years after the boom starts. We also incorporate this approach in the 2SLS 
framework, where we run the regression using the stacked sample and incorporate cohort-
specific fixed effects in both stages. These results are reported in Table A5. 
In addition, we find that these patterns and estimates are robust (1) using other reason-

able “no-boom” cutoffs and (2) using a “boom” indicator instead of an intensity measure. 
These results are available upon request. In general, we consistently find that the results 
under this approach are similar to our main estimation. Therefore, we conclude that our 
main results are not subject to substantive bias due to the negative weighting problem. 
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E Additional Notes on Heterogeneity Analysis 

E.1 Estimation Equations 

In Section 5, we estimate heterogeneous effects based on (1) judicial review law status 
and (2) non-SFHA tail risk. In this section, we specify and discuss the two-stage least square 
(2SLS) estimation equations used in those two tests. 
In both tests, we estimate the heterogeneous effect based on an indicator variable, Char. 

In the first test, it indicates that the MSA is subject to the judicial review law. In the 
second, it indicates that the MSA has above-median non-SFHA risk. Formally, our second-
stage equation is a version of Equation (3) with an additional interaction term: 

\lnNF IPmt = β1 · lnHP Imt + β2 · lnHP I\ 
mt × Charm + δ0Xmt + λm + λt + εmt. (E1) 

Note that we do not need to include Charm in the equation because it is absorbed by the 
MSA fixed effect. β1 measures the home price elasticity of take-up by the baseline group 
(MSAs with no judicial review law/below-median risk), and β2 measures the additional effect 
for the indicated group. Since lnHP I is an endogenous variable, so is the interaction term. 
Therefore, we need to instrument for both in the first stage: 

X24 24X 
lnHP Imt = ρ1τ (P ostτmt × ΔPm) + σ1τ (P ostτmt × ΔPm × Charm) 

τ =0 τ=0 
0+ µ1Xmt + γ1m + γ1t + ω1mt 

(E2)
24 24X X 

lnHP Imt×Charm = ρ2τ (P ostτ × ΔPm) + σ2τ (P ostτ × ΔPm × Charm)mt mt 
τ=0 τ =0 

+ µ2 
0 Xmt + γ2m + γ2t + ω2mt. 

In addition to the original set of instruments, we interact each of them with Charm to create 
new instruments in these regressions. 

E.2 Interpretation 

The main challenge in interpreting β2 is that the characteristic of interest Charm might 
not be exogenous. Thus, although β2 represents the differential effect of home prices for 
MSAs with this characteristic relative to those without, we cannot causally attribute the 
entire effect to the characteristic. We can, however, consider the most likely confounders 
and assess how they might affect the interpretation of β2. 
For the analysis with the judicial review laws, one might be concerned that the statute 

itself was established in response to the housing market conditions in the state. This is, 
however, unlikely because most state foreclosure laws were established in the 1930s and 
few have changed since (Demiroglu et al., 2014). Nevertheless, the judicial review status 
might still be correlated with other drivers of the relationship between housing prices and 
insurance take-up. To explore the differences between the MSAs with judicial review laws 
and those without, we examine the differences between the major characteristics of each 
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Table E1: MSA Characteristics by Judicial Review Law and 
Non-SFHA Extreme Risk (2001 Q1) 

A. Judicial Review Law 

Group No 
(N=127) 

Yes 
(N=138) 

p-value 

Structural Break IV 
Total SFHA Policies 
Total Non-SFHA Policies 
Average Risk Score (SFHA) 
Average Risk Score (Non-SFHA) 
1-Yr Renewal Rate (SFHA) 
1-Yr Renewal Rate (Non-SFHA) 
Population 
Income 
Employment Rate 
Home Sales 

0.05 (0.07) 
2,618 (6,304) 
1,539 (4,063) 
4.64 (1.27) 
1.66 (0.39) 
0.76 (0.15) 
0.81 (0.19) 
832 (1,412) 
29.0 (5.76) 
0.58 (0.08) 

13,494 (22,755) 

0.03 (0.06) 
8,908 (27,960) 
4,091 (12,029) 
4.78 (1.33) 
1.67 (0.68) 
0.77 (0.18) 
0.83 (0.20) 
728 (1,141) 
29.5 (5.44) 
0.59 (0.08) 

10,742 (20,194) 

0.016∗∗ 

0.011∗∗ 

0.020∗∗ 

0.372 
0.829 
0.825 
0.400 
0.514 
0.464 
0.335 
0.308 

B. Non-SFHA Tail Risk 

Group Below Median 
(N=133) 

Above Median 
(N=132) 

p-value 

Structural Break IV 
Total SFHA Policies 
Total Non-SFHA Policies 
Average Risk Score (SFHA) 
Average Risk Score (Non-SFHA) 
1-Yr Renewal Rate (SFHA) 
1-Yr Renewal Rate (Non-SFHA) 
Population 
Income 
Employment Rate 
Home Sales 

0.05 (0.08) 
9,944 (28,574) 
4,806 (12,550) 
4.35 (1.23) 
1.72 (0.56) 
0.79 (0.15) 
0.82 (0.18) 
1,016 (1,632) 
29.4 (6.23) 
0.58 (0.09) 
14916 (24688) 

0.03 (0.05) 
1,814 (4,431) 
915 (2,029) 
5.08 (1.27) 
1.61 (0.56) 
0.74 (0.19) 
0.83 (0.21) 
540 (704) 
29.1 (4.89) 
0.60 (0.08) 
8986 (17064) 

0.016∗∗ 

0.001∗∗∗ 

0.001 
<0.001∗∗∗ 

0.106 
0.013∗∗ 

0.738 
0.002∗∗∗ 

0.593 
0.114 
0.025∗∗ 

Source: OpenFEMA policy and claims data, Charles et al. (2019), Bureau of Economic 
Analysis, FHFA Home Price Index, First Street Foundation, CoreLogic Deeds data 
Notes: This table reports the mean of major characteristics for each group. The last 

∗column reports the p-value of the difference in group means. p < 0.1; ∗∗ p < 0.05; ∗∗∗ p 
< 0.01 

group in the first quarter of 2001 (see Panel A of Table E1). The two groups have notable 
differences: MSAs with judicial review laws experienced smaller housing booms and have a 
greater number of NFIP policies in force. However, the groups are quite comparable in other 
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dimensions. In particular, we detect no systematic differences in factors appears that could 
amplify or weaken the relationship between housing prices and insurance take-up, such as 
the overall risk level, income, and household liquidity (as proxied by the one-year renewal 
rate). Therefore, this gives us more confidence that the comparison between the two groups 
can provide meaningful evidence on the effect of foreclosure costs. 
For the analysis of non-SFHA tail risk, we compare MSAs with above-median non-SFHA 

tail risk to those below the median. It should be noted that our risk measure is intended 
to capture the extremity of risk instead of the average level. For the latter, its time-varying 
effect has already been controlled for in the estimation. There are more qualitative differences 
in baseline characteristics between the two groups of MSAs (see Panel B of Table E1). The 
MSAs with above-median tail risk experienced smaller housing booms, have a significantly 
smaller number of policies in force, and have a smaller population. The SFHAs in these 
MSAs also have high average risk levels and one-year renewal rates. Nevertheless, these 
variables are not systematically different for non-SFHA policies, which is more reassuring 
because our main outcome of interest is non-SFHA take-up. Similarly, the two sets of MSAs 
have no difference in income levels. 

F First-Difference Estimation 

To separately examine the changes in flood insurance take-up over the course of the 
housing boom and bust, we use the first-difference approach following Charles et al. (2018). 
They show that the structural breaks not only predict the housing boom during 2000–2006 
but also the size of the bust during 2007–2012. 
For the boom period, we instrument housing price change from 2002 to 2007 using the 

structural breaks: 

\ΔboomlnNF IPm = β0 + βFDΔboomlnHP I + δ0ΔboomXm + εm. (F1) 

Here, Δboom represents the change in the variable between 2002 Q1 and 2007 Q1, which we 
apply to all variables in the original regression. We also directly control for the risk score. 
Our key regressor is the change in log housing price index (ΔlnHP I), which we instrument 
with the break size instrument. The coefficient βFD is the first-difference estimate of how 
housing price changes during the boom affect flood insurance take-up. The corresponding 
reduced-form regressions take the form 

ΔboomlnNF IPm = α0 + αFDΔPm + γ0ΔboomXm + um, (F2) 

where we regress the first difference in NFIP policy count directly on the structural break 
size and the same set of first-differenced covariates. 
For the bust period, we augment the above specification by adding an interaction term 

between the housing price change and an indicator for whether the building was built between 
2003 and 2005. These homes, which we call the “boom cohort”, are likely to see close to zero 
or negative equity during the bust and hence be most subject to the risk shifting mechanism. 
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The regression takes the following form: 

\ \ΔbustlnNF IPm =β0 + βFDΔbustlnHP I + βF D,BC ΔbustlnHP I × 1(BoomCohort) 
(F3) 

+ δ0ΔbustXm × 1(BoomCohort) + εm. 

Here, Δbust represents the change in the variable between 2007 Q1 and 2012 Q1, which we 
apply to all variables in the original regression. We also include an additional control of the 
share of foreclosures among home sales. 
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